当前位置: 首页 > news >正文

32- PyTorch基础 (PyTorch系列) (深度学习)

知识要点

  •  PyTorch可以说是现阶段主流的深度学习框架 .


1 PyTorch入门

1.1 PyTorch概述

Torch是什么?一个火炬!其实跟Tensorflow中Tensor是一个意思,可以当做是能在GPU中计算的矩阵.,也可以当做是ndarray的GPU版

PyTorch可以说是现阶段主流的深度学习框架,武林盟主之争大概是这个历史。15年底之前Caffe是老大哥,随着Tensorflow的诞生,霸占江湖数载,19年起无论从学术界还是工程界PyTorch已经霸占了半壁江山!

1.2 PyTorch安装

打开PyTorch 官网, 根据官网的安装提示选择符合自己情况的选项, 生成安装语句, 拷贝安装语句进行安装.

2. PyTorch张量

Pytorch最基本的操作对象是Tensor(张量),它表示一个多维矩阵.

张量类似于NumPy的ndarrays,张量可以在GPU上使用以加速计算。

2.1 张量与数据类型

import torch
import numpy as np
import pandas as pd
  • 创建tensor: 可以直接使用python列表或者ndarray创建tensor
x = torch.tensor([6, 2])
x = torch.tensor(np.array([1, 2, 3]))
  • 与ndarray类似, pytorch也有很多快捷的方法用来创建张量.
import torch# 创建一个[0, 1)之间的随机均匀分布
x = torch.rand(2, 3)
print(x)# 创建一个标准正态分布
x = torch.randn(2, 3)
print(x)# 创建全是0的tensor
x = torch.zeros(2, 3)
print(x)# 创建全是1的tensor
x = torch.ones(2, 3)
print(x)

  • 类似的可以通过shape或size获取tensor的形状, size可以具体制定获取哪一个维度的形状大小:
x = torch.ones(2, 3, 4)
x.shape
# 输出 torch.Size([2, 3, 4])
x.size()
# 输出 torch.Size([2, 3, 4])
x.size(0)
# 输出 2

2.2 Tensor基本数据类型

pytorch中的tensor有以下基本数据类型

  • 32位浮点型: torch.float32

  • 64位浮点型: torch.float64

  • 32位整型: torch.int32

  • 16位整型: torch.int16

  • 64位整型: torch.int64

我们可以在创建tensor的时候通过dtype指定数据类型:

x = torch.tensor([6, 2], dtype=torch.float32)# 通过.type转换数据类型
x.type(torch.int64)    # tensor([6, 2])

2.3 与ndarray数据类型的转换

ndarray可以和tensor进行转换

import numpy as np# 标准正太分布
a = np.random.randn(2, 3)
# 通过from_numpy可以把ndarray转化为tensor
x1 = torch.from_numpy(a)
# tensor通过numpy也可以转化为ndarray
x1.numpy()
'''array([[ 0.00346987,  0.49298463,  0.8929266 ],[-1.21628393, -0.93081964, -0.16680752]])'''

2.4 张量运算

tensor的运算规则和numpy的运算规则很类似:

import numpy as npa = np.random.randn(2, 3)
# 通过from_numpy可以把ndarray转化为tensor
x1 = torch.from_numpy(a)
x = torch.ones(2, 3)# 和单个数字运算, tensor中每个元素分别和这个数字运算
x + 3
'''输出:tensor([[4., 4., 4.],[4., 4., 4.]], dtype=torch.float64)'''# 两个形状相同的tensor进行运算, 对应位置元素分别运算.
x + x1# 也可以调用pytorch的运算方法, 结果是一样的
x.add(x1)# 加了下划线表示对x本来的值进行修改
x.add_(x1)# 改变tensor的形状, 使用.view, 相当于numpy中的reshape
x.view(3, 2)
x.view(-1, 1)
print(x)
'''tensor([[-0.7429,  0.5438, -0.0259],[ 0.8848, -0.0550,  2.7443]])'''# 单个元素的张量使用.item()转化为python数据
x = x.mean()   # tensor(0.5582)
x.item()    # 0.5581828951835632

2.5 张量的自动微分

将Torch.Tensor属性 .requires_grad 设置为True,

pytorch将开始跟踪对此张量的所有操作。

完成计算后,可以调用 .backward() 并自动计算所有梯度。

该张量的梯度将累加到.grad属性中。

x = torch.ones(2, 2, requires_grad=True)
x.requires_grad    # 输出 True# 进行张量运算
y = x + 2# y是由于运算而创建的,因此具有grad_fn属性
print(y.grad_fn)
# 输出: <AddBackward0 object at 0x00000096768B1708># 进行更多操作
z = y * y * 3
out = z.mean()print(z, out)
# 输出
#tensor([[27., 27.],#[27., 27.]], grad_fn=<MulBackward0>) tensor(27., grad_fn=<MeanBackward0>)

2.6 计算梯度

out.backward()    # 自动微分运算, 注意 out 是标量值
# 打印梯度 d(out)/ dx out = f(x)
print(x.grad)
# tensor([[4.5000, 4.5000],# [4.5000, 4.5000]])

当张量的 requires_grad 属性为 True 时,

pytorch会一直跟踪记录此张量的运算

当不需要跟踪计算时,可以通过将代码块包装在 with torch.no_grad(): 上下文中

print(x.requires_grad)    # True
print((x ** 2).requires_grad)    # Truewith torch.no_grad():print((x ** 2).requires_grad)    # False

也可使用 .detach() 来获得具有相同内容但不需要跟踪运算的新Tensor :

print(x.requires_grad)    # True
y = x.detach()
print(y.requires_grad)    # False

使用 requires_grad_ 就地改变张量此属性:

a = torch.randn(2, 2)
a = a*3 + 2
print(a.requires_grad)
# 输出 False
a.requires_grad_(True)
print(a.requires_grad)
# 输出True

http://www.lryc.cn/news/31127.html

相关文章:

  • 用gdb.attach()在gdb下断点但没停下的情况及解决办法
  • Linux入门篇-作业(jobs)调度(本质仍然是进程)
  • vue 监听 取消监听
  • 0103深度优先搜索和单点连通-无向图-数据结构和算法(Java)
  • 进销存管理系统
  • Sonar:VSCode配置SonarLint/SonarLint连接SonarQube
  • 陀螺仪小车(Forerake-Car)
  • Leetcode Day5 含有重复元素集合的组合+
  • Mac Book pro(M1)使用总结
  • QML集成JavaScript
  • 学习周报3.5
  • java基础学习篇
  • Go 语言基础语法及应用实践
  • C语言自定义类型---进阶
  • 85.链表总结
  • 【博学谷学习记录】超强总结,用心分享|狂野大数据课程【DataFrame的相关API】的总结分析
  • 粒子群优化最小二乘支持向量机SVM回归分析,pso-lssvm回归预测
  • lavis多模态开源框架学习--安装
  • 【IDEA】如何在Tomcat上创建部署第一个Web项目?
  • 程序员画流程图的工具Draw.io
  • CAPL脚本DBLookup函数动态访问CAN 报文的属性
  • 2022年显卡性能跑分排名表
  • mx-font
  • 基于S32K148快速调试TJA1101
  • 万字长文详解webpack知识图谱
  • 模板测试(Stencil Test)
  • 【Go语言学习】安装与配置
  • HCIP-5OSPF区域类型学习笔记
  • C语言再学习第三章
  • 【aiy篇】小目标检测综述