当前位置: 首页 > news >正文

(12)Hive调优——count distinct去重优化

   离线数仓开发过程中经常会对数据去重后聚合统计,count distinct使得map端无法预聚合,容易引发reduce端长尾,以下是count distinct去重调优的几种方式。

解决方案一:group by 替代

原sql 如下:

#=====7日、14日的app点击的用户数(user_id去重统计)
selectgroup_id,app_id,
-- 7日内UVcount(distinct case when dt >= '${7d_before}' then user_id else null end)  as 7d_uv, 
--14日内UVcount(distinct case when dt >= '${14d_before}' then user_id else null end) as 14d_uv 
from tbl
where dt >= '${14d_before}'
group by group_id, --渠道app_id;  --app

优化思路:group by两阶段聚合

#=====7日、14日的app点击的用户数(user_id去重统计)
selectgroup_id,app_id,
-- 7日内UVsum(case when 7d_cnt > 0 then 1 else 0 end) as 7d_uv,
--14日内UVsum(case when 14d_uv > 0 then 1 else 0 end) as 14d_uvfrom (selectgroup_id,app_id,-- 7日内各渠道各app下的每个用户的点击量count(case when dt >= '${7d_before}' then user_id else null end)  as 7d_cnt,-- 14日内各渠道各app下的每个用户点击量count(case when dt >= '${14d_before}' then user_id else null end) as 14d_uvfrom tblwhere dt >= '${14d_before}'group by group_id,app_id,user_id) tmp1
group by group_id,app_id;

方案一弊端:数据倾斜风险

  解决方案一通过两阶段group by(分组聚合) 对count (distinct) 进行改造调优,需要注意的是:如果分组字段user_id在tbl 表中存在大量的重复值,group by底层走shuffle,会有数据倾斜的风险,因此方案一还可以进一步优化。

解决方案二:group by调优

1)添加随机数,两阶段聚合(推荐

#===============优化前
insert overwrite table tblB partition (dt = '2022-10-19')
selectcookie_id,event_query,count(*)  as cnt
from tblA
where dt >= '20220718'and dt <= '20221019'and event_query is not null
group by cookie_id, event_query#===============优化后
insert overwrite table tblB partition (dt = '2022-10-19')
selectsplit(tkey, '_')[1] as cookie_id,event_query,#--- 求出最终的聚合值sum(cnt)   as cnt
from (selectconcat_ws('_', cast(ceiling(rand() * 99) as string), cookie_id) as tkey,event_query,#---将热点Key值:cookie_id 进行打散后,先局部聚合得到cntcount(*)  as cntfrom tblAwhere dt >= '20220718'and dt <= '20221019'and event_query is not null#--- 第一阶段:添加[0-99]随机整数,将热点Key值:cookie_id 进行打散( M -->R)group by concat_ws('_', cast(ceiling(rand() * 99) as string), cookie_id),event_query) temp#--- 第二阶段:对拼接的key值进行切分,还原原本的key值split(tkey, '_')[1] =cookie_id ( R -->R)
group by split(tkey, '_')[1], event_que

 优化思路为:

  •   第一阶段:对需要聚合的Key值添加随机后缀进行打散,基于加工后的key值进行初步聚合(M-->R1)
  •   第二阶段:对加工后的key值进行切分还原,对第一阶段的聚合值进行再次聚合,求出最终结果值(R1-->R2)

2)开启Map端聚合

#--开启Map端聚合,默认为true
set hive.map.aggr = true;
#--在Map 端预先聚合操作的条数
set hive.groupby.mapaggr.checkinterval = 100000;

    该参数可以将顶层的聚合操作放在 Map 阶段执行,从而减轻shuffle清洗阶段的数据传输和 Reduce阶段的执行时间,提升总体性能。

3)数据倾斜时自动负载均衡

#---有数据倾斜的时候自动负载均衡(默认是 false)
set hive.groupby.skewindata = true;

  开启该参数后,当前程序会自动通过两个MapReduce来运行,将M->R阶段 拆解成 M->R->R阶段

  • 第一个MapReduce自动进行随机分布到Reducer中(负载均衡),每个Reducer做部分聚合操作,输出结果
  • 第二个MapReduce将上一步聚合的结果再按照业务(group by key)进行处理,保障相同的key分发到同一个reduce做最终聚合。
http://www.lryc.cn/news/301002.html

相关文章:

  • 记录 | 验证pytorch-cuda是否安装成功
  • LeetCode 239.滑动窗口的最大值 Hot100 单调栈
  • 463. Island Perimeter(岛屿的周长)
  • 如何解决缓存和数据库的数据不一致问题
  • linux系统下vscode portable版本的python环境搭建003:venv
  • 使用TinyXML-2解析XML文件
  • Linux:docker在线仓库(docker hub 阿里云)基础操作
  • C语言程序设计(第四版)—习题7程序设计题
  • ZCC6982-同步升压充双节锂电池充电芯片
  • 定时器(基本定时器、通用定时器、高级定时器)
  • 009集——磁盘详解——电脑数据如何存储在磁盘
  • 鸿蒙开发-HarmonyOS UI架构
  • Flutter 动画(显式动画、隐式动画、Hero动画、页面转场动画、交错动画)
  • 用HTML5 Canvas创造视觉盛宴——动态彩色线条效果
  • 云原生介绍与容器的基本概念
  • Flash存储
  • Day 44 | 动态规划 完全背包、518. 零钱兑换 II 、 377. 组合总和 Ⅳ
  • 使用PaddleNLP UIE模型提取上市公司PDF公告关键信息
  • 软件工程师,OpenAI Sora驾到,快来围观
  • 【Linux 04】编辑器 vim 详细介绍
  • KMP算法详解
  • ubuntu22.04@laptop OpenCV Get Started: 013_contour_detection
  • [ai笔记5] 个人AI资讯助手实战
  • QT+OSG/osgEarth编译之八十九:osgdb_ply+Qt编译(一套代码、一套框架,跨平台编译,版本:OSG-3.6.5插件库osgdb_ply)
  • 机器人专题:我国机器人产业园区发展现状、问题、经验及建议
  • 算法沉淀——哈希算法(leetcode真题剖析)
  • 深入理解Redis哨兵原理
  • MySQL-存储过程(PROCEDURE)
  • linux系统监控工具prometheus的安装以及监控mysql
  • 初识tensorflow程序设计模式