当前位置: 首页 > news >正文

【LeetCode】37. 解数独(困难)——代码随想录算法训练营Day30

题目链接:37. 解数独

题目描述

编写一个程序,通过填充空格来解决数独问题。

数独的解法需 遵循如下规则

  1. 数字 1-9 在每一行只能出现一次。
  2. 数字 1-9 在每一列只能出现一次。
  3. 数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。(请参考示例图)

数独部分空格内已填入了数字,空白格用 '.' 表示。

示例 1:

输入:board = [["5","3",".",".","7",".",".",".","."],["6",".",".","1","9","5",".",".","."],[".","9","8",".",".",".",".","6","."],["8",".",".",".","6",".",".",".","3"],["4",".",".","8",".","3",".",".","1"],["7",".",".",".","2",".",".",".","6"],[".","6",".",".",".",".","2","8","."],[".",".",".","4","1","9",".",".","5"],[".",".",".",".","8",".",".","7","9"]]
输出:[["5","3","4","6","7","8","9","1","2"],["6","7","2","1","9","5","3","4","8"],["1","9","8","3","4","2","5","6","7"],["8","5","9","7","6","1","4","2","3"],["4","2","6","8","5","3","7","9","1"],["7","1","3","9","2","4","8","5","6"],["9","6","1","5","3","7","2","8","4"],["2","8","7","4","1","9","6","3","5"],["3","4","5","2","8","6","1","7","9"]]
解释:输入的数独如上图所示,唯一有效的解决方案如下所示:

提示:

  • board.length == 9
  • board[i].length == 9
  • board[i][j] 是一位数字或者 '.'
  • 题目数据 保证 输入数独仅有一个解

文章讲解:代码随想录

视频讲解:回溯算法二维递归?解数独不过如此!| LeetCode:37. 解数独_哔哩哔哩_bilibili

题解1:回溯法

思路:使用回溯法求解棋盘类问题。

回溯分析:

  • 递归函数的参数和返回值:返回值是一个布尔值,表示是否填充完毕。参数为 num,表示当前已填充几个数字。
  • 递归函数的终止条件:num 等于81,即填充完整个数独。
  • 单层递归的逻辑:若当前格还未填充,则从1到9尝试填充,然后递归的填充下一格;已填充则直接递归的填充下一格。
  • 剪枝:当与其他格数字冲突时,跳过本次填充。
/*** @param {character[][]} board* @return {void} Do not return anything, modify board in-place instead.*/
var solveSudoku = function(board) {const rowState = new Array(9).fill().map(() => new Array(9).fill(false)); // 行状态const colState = new Array(9).fill().map(() => new Array(9).fill(false)); // 列状态const squierState = new Array(3).fill().map(() => new Array(3).fill().map(() => new Array(9).fill(false))); // 单元状态// 初始化状态表for (let i = 0; i < 9; i++) {for (let j = 0; j < 9; j++) {if (board[i][j] === ".") {continue;}rowState[i][board[i][j]] = true;colState[j][board[i][j]] = true;squierState[parseInt(i / 3)][parseInt(j / 3)][board[i][j]] = true;}}const backtracking = function (num) {if (num === 81) {return true; // 填充完毕,返回 true}const col = num % 9; // 计算列数const row = (num - col) / 9; // 计算行数if (board[row][col] !== ".") {return backtracking(num + 1); // 已经有数字了,向下遍历}// 从1到9尝试填充for (let j = 1; j <= 9; j++) {// 和规则冲突,尝试填充下一个数if (rowState[row][j] || colState[col][j] || squierState[parseInt(row / 3)][parseInt(col / 3)][j]) {continue;}board[row][col] = "" + j; // 填充rowState[row][j] = true; // 更新行状态colState[col][j] = true; // 更新列状态squierState[parseInt(row / 3)][parseInt(col / 3)][j] = true; // 更新单元状态// 向下遍历if (backtracking(num + 1)) {return true; // 已经填充完毕,返还 true}// 回溯board[row][col] = ".";rowState[row][j] = false;colState[col][j] = false;squierState[parseInt(row / 3)][parseInt(col / 3)][j] = false;}return false;}backtracking(0);
};

分析:设 m 为 . 的数量,则时间复杂度为 O(9 ^ m),空间复杂度为 O(n²)。

收获

练习使用回溯法求解棋盘类问题,和 n 皇后问题不同的是,本题需要填充一个二维数组。

http://www.lryc.cn/news/296915.html

相关文章:

  • VUE学习——属性绑定
  • vue3 之 通用组件统一注册全局
  • [Java][算法 双指针]Day 02---LeetCode 热题 100---04~07
  • 【问题解决】如何将一个服务器的docker迁移到另一个服务器
  • C++单例模式详解
  • LLM应用开发与落地:流式响应
  • 神经网络 | 基于 CNN 模型实现土壤湿度预测
  • 江科大STM32 终
  • 《MySQL 简易速速上手小册》第10章:未来趋势和进阶资源(2024 最新版)
  • Stable Diffusion 模型下载:GhostMix(幽灵混合)
  • django解决Table ‘xx‘ already exists的方法
  • qt学习:arm摄像头+c调用v412框架驱动+qt调用v412框架驱动 显示摄像头画面
  • Linux 36.2@Jetson Orin Nano基础环境构建
  • 牛客网SQL264:查询每个日期新用户的次日留存率
  • echarts 曲线图自定义提示框
  • 幻兽帕鲁服务器怎么搭建?Palworld多人联机教程
  • DAY39: 动态规划不同路径问题62
  • idea开发工具的简单使用与常见问题
  • 使用 WMI 查询安全软件信息
  • 创建TextMeshPro字体文件
  • 信创ARM架构QT应用开发环境搭建
  • 使用SPM_batch进行批量跑脚本(matlab.m)
  • 力扣0124——二叉树的最大路径和
  • c# 字符串帮助类
  • LabVIEW双光子荧光显微成像系统开发
  • Prim模板
  • CSS之盒子模型
  • Linux系统安装(CentOS Vmware)
  • STM32 硬件随机数发生器(RNG)
  • Window环境下使用go编译grpc最新教程