当前位置: 首页 > news >正文

堆排及时间复杂度分析

箴言:

初始阶段,不需要去纠结那一种更优美,非要找出那一种是最好的,其实能解决问题的就是好办法。

一,常见排序时间复杂度

冒泡快排归并堆排桶排
时间O(n^2)O(nlogn)O(nlogn)O(nlogn)kn
空间O(1)O(1)O(nlogn)O(1)kn

二,堆排

前情提要:

堆属于完全树,完全树可以理解为一个数组。如果不是完全树,就没办法和数组等价,就不会有下面这种父级和子级之间的关系。

已知父级下标i
左孩子下标: 2*i+1
右孩子下标: 2*i+2
已知孩子结点j(无论左还是右)
父级下标 (j-1)/2

堆排序过程:

堆排序分成两个阶段,第一个阶段从由无序数组建立一个大/小根堆,第二个阶段在大/小根堆的基础上调整,形成有序数组。

从无序数组到大根堆:

对于数组中每一个元素,我们需要将其和其父级做对比,若比父级大,则进行交换,直到最顶层为止。

代码:(其实找父亲的时候可以不区分左右减一除二即可,我这里就不改了)

    public static void builddui(int[] arr) {for (int i = 0; i < arr.length; i++) {int j = i;int p = 0;if (j % 2 == 1) {//左孩子p = (j - 1) / 2;} else {p = (j - 2) / 2;//右孩子}while (p >= 0 && arr[p] < arr[j]) {int t = arr[p];//交换位置arr[p] = arr[j];arr[j] = t;j = p;p = (j - 1) / 2;}}}

从大根堆到有序序列:

最后一个位置和堆顶交换,将交换之后的堆顶下沉到正确的位置。然后堆顶和倒数第二个交换,堆顶下沉到正确的位置,直到剩下一个为止。这是一个堆顶元素不断下沉的过程。

代码:(r表示的是最后一个的索引位置)

    public static void weichidui(int[] arr, int r) {int t = arr[r];arr[r] = arr[0];arr[0] = t;int cur = 0;//当前下标while (2 * cur + 1 < r) {int index = 2 * cur + 1;int maxv = arr[index];if (2 * cur + 2 < r && arr[index] < arr[2 * cur + 2]) {index = 2 * cur + 2;maxv = arr[2 * cur + 2];}if (maxv > arr[cur]) {int tmp = arr[cur];arr[cur] = arr[index];arr[index] = tmp;}cur = index;}}

时间复杂度分析:

上述两个阶段分别分析: 从无序序列到建成大顶堆: 已知数组中数量为n,每正确插入一个元素,时间复杂度为logn(因为树的深度为logn),因为插入n个元素,时间复杂度为nlogn。

从大顶堆到有序序列:每次首尾交换之后都需要将堆顶元素下沉到正确的位置,时间复杂度为logn(因为树的深度为logn,比较交换次数其实是小于logn的,但是理解为logn就行),需要下沉n次,所以时间复杂度是nlogn。

ABOVE ALL,堆排时间复杂度为2nlogn,也就是O(nlogn),一切操作都是在原数组上进行的操作,所以空间复杂度为O(1)。

堆排序是一个完美的排序方式,无论时间或者空间,数据量小的时候差距不明显,数据量越大,优势就会越明显。

代码:

数组:[34,56,23,33,5,46,4,57,6,76,34,42,634,6,536,3,3423,3,1,5,537,3,57,3563,4,65,764,4]

import java.util.Arrays;/*** @Author YuLing* @Date 2024-02-07 19:14* @Description:* @Version 1.0*/
public class dui {public static void main(String[] args) {int[] arr = new int[]{34,56,23,33,5,46,4,57,6,76,34,42,634,6,536,3,3423,3,1,5,537,3,57,3563,4,65,764,4};builddui(arr);System.out.println(Arrays.toString(arr));for (int i = 0; i < arr.length; i++) {weichidui(arr,  arr.length - 1 - i);}System.out.println(Arrays.toString(arr));}public static void builddui(int[] arr) {for (int i = 0; i < arr.length; i++) {int j = i;int p = 0;if (j % 2 == 1) {//左孩子p = (j - 1) / 2;} else {p = (j - 2) / 2;//右孩子}while (p >= 0 && arr[p] < arr[j]) {int t = arr[p];//交换位置arr[p] = arr[j];arr[j] = t;j = p;p = (j - 1) / 2;}}}public static void weichidui(int[] arr, int r) {int t = arr[r];arr[r] = arr[0];arr[0] = t;int cur = 0;//当前下标while (2 * cur + 1 < r) {int index = 2 * cur + 1;int maxv = arr[index];if (2 * cur + 2 < r && arr[index] < arr[2 * cur + 2]) {index = 2 * cur + 2;maxv = arr[2 * cur + 2];}if (maxv > arr[cur]) {int tmp = arr[cur];arr[cur] = arr[index];arr[index] = tmp;}cur = index;}}
}

输出:

[3563, 634, 3423, 57, 537, 764, 76, 34, 6, 56, 57, 46, 536, 4, 6, 3, 33, 3, 1, 5, 5, 3, 34, 23, 4, 42, 65, 4]
[1, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 23, 33, 34, 34, 42, 46, 56, 57, 57, 65, 76, 536, 537, 634, 764, 3423, 3563]

http://www.lryc.cn/news/296235.html

相关文章:

  • 数据结构:双向链表
  • 51单片机之数码管显示表白数字篇
  • 代码随想录算法训练营DAY16 | 二叉树 (3)
  • springboot(ssm大学生计算机基础网络教学系统 在线课程系统Java系统
  • 前端架构: 脚手架的开发流程和常用框架
  • 3.0 Hadoop 概念
  • mysql 对于null字段排序处理
  • NLP_语言模型的雏形 N-Gram 模型
  • mac电脑flutter环境配置,解决疑难问题
  • C++ bool 布尔类型
  • DC-7靶机渗透详细流程
  • 提速MySQL:数据库性能加速策略全解析
  • Flink实战六_直播礼物统计
  • Compose | UI组件(十五) | Scaffold - 脚手架
  • Vue-60、Vue技术router-link的replace属性
  • Hive与Presto中的列转行区别
  • 探讨CSDN等级制度:博客等级、原力等级、创作者等级
  • 2.8作业
  • 机器学习中常用的性能度量—— ROC 和 AUC
  • 微服务入门篇:Nacos注册中心(Nacos安装,快速入门,多级存储,负载均衡,环境隔离,配置管理,热更新,集群搭建,nginx反向代理)
  • 解决CORS错误(Spring Boot)
  • NLP入门系列—词嵌入 Word embedding
  • JUnit5单元测试框架提供的注解
  • ThinkPHP 中使用Redis
  • Go语言Gin框架安全加固:全面解析SQL注入、XSS与CSRF的解决方案
  • MySQL数据库基础与SELECT语句使用梳理
  • scikit-learn 1.3.X 版本 bug - F1 分数计算错误
  • Python面试题19-24
  • 《Django+React前后端分离项目开发实战:爱计划》 01 项目整体概述
  • 从零开始 TensorRT(4)命令行工具篇:trtexec 基本功能