当前位置: 首页 > news >正文

51单片机之数码管显示表白数字篇

朝菌不知晦朔

蟪蛄不知春秋

眼界决定境界


CSDN 请求进入专栏                               

是否进入《51单片机专栏》?

确定

目录

 数码管的简介 

数码管引脚定义

数码管的原理图

74HC245

代码实现 

 静态数码管的显示

 动态数码管的显示

 数码管实现表白画面

 数码管的简介 

LED数码管(LED Segment Displays):由多个 发光二极管 封装在一起组成 8 字型的器件,引线已在内部连接完成,只需引出它们的各个笔划,公共电极。数码管实际上是由七个发光管组成 8 字形构成的,加上小数点就是 8 个。这些段分别由字母 a b c d e f g dp 来表示

数码管引脚定义

使数码管显示数字的方法就是控制不同的发光体来发光,达到显示不同数字的目的

八段数码管中八个LED发光体有两种接法:共阴极 和 共阳极

共阴极:公共端为阴极,加阳极数码管点亮

即当真值为 1 时,数码管点亮;真值为 0 时,数码管不亮

共阳极:公共端为阳极,加阴极数码管点亮

即当真值为 0 时,数码管点亮;真值为 1 时,数码管不亮

注意:

我们的单片机数码管上端是共阴极的,所以发光的条件是上端赋予低电平,下端赋予高电平

为了下面的方便这里总结出单片机的段码

/*0~9*/0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f
/*A~F*/0x77,0x7c,0x39,0x5e,0x79,0x71

位选:在使用时,需要程序选定使用哪几个数码管

段选:选定数码管后再对选定的数码管进行操作,其操作与单个数码管的操作一致

如果我们想在数码管显示我们的数字 6

共阴极:

<1>共阴极的公共端要接地(低电平)

<2>阳极(位选端)根据LED的亮灭需求给数据 0 或  1(1亮、0灭) ,这串数据称为 段码 

<3>共阴极的环境下我们应该位选 a b c d e f 个数码管

<4>再对数码管进行电频的输入:1 0 1 1 1 1 1 0 (段码)也就是 0x7d

共阳极:

<1>共阳极端的公共端要接到 VCC(高电平),阴极给数据 0 或 1 (1灭,0亮)

<2>共阳极的环境下我们应该位选 a b c d e f 个数码管

<3>再对数码管进行电频的输入:0 1 0 0 0 0 0 1

通过以上我们可以知道:共阴极与共阳极的段选是 互补 

数码管的原理图

<1>数码管连接方式为共阴极连接

<2>而上面的 LED1 ~ 8,其实接在了138译码器的输出端138译码器正好可以实现让LED1 ~ 8输出 0 或 1

<3>138译码器可将LED 1 ~ 8的八个端口转化为由3个端口 (P22、P23、P24)控制,而G1、G2A、G2B端口被称为 使能端

<4>38译码器也叫 38线译码器 ,是由3个线到8个线,其中C是高位、A是低位,CBA组成的数符合 8 进制,控制着Y0 ~ Y7 这 8 个端口

<5>138译码器的作用就是用来选中某一位数码管的

74HC245

<1>74HC245是一种 双向数据缓冲器输出使能(OE),方向控制(DIR),电源(VDD)和(GND)

<2>方向控制DIR:它接到了VCC(高电平)上,将数据从左边输出到右边,从右边将数据读取回左边

<3>单片机的高电频驱动能力,低电频驱动能力

<4>CC2电容是用来 稳定 电源的,叫电源滤波

<5>上图的中间位置有一排电阻(100R),作用为限流电阻 ,防止数码管的电流过大

代码实现 

 静态数码管的显示

#include <REGX52.H>unsigned char NixieTable[] = {0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F,0x77,0x7F,0x39,0x3F,0x79,0x71};void Nixie(unsigned char Location,Number)
{switch(Location){case 1:P2_4 = 1;P2_3 = 1;P2_2 = 1;break;case 2:P2_4 = 1;P2_3 = 1;P2_2 = 0;break;case 3:P2_4 = 1;P2_3 = 0;P2_2 = 1;break;case 4:P2_4 = 1;P2_3 = 0;P2_2 = 0;break;case 5:P2_4 = 0;P2_3 = 1;P2_2 = 1;break;case 6:P2_4 = 0;P2_3 = 1;P2_2 = 0;break;case 7:P2_4 = 0;P2_3 = 0;P2_2 = 1;break;case 8:P2_4 = 0;P2_3 = 0;P2_2 = 0;break;}P0 = NixieTable[Number];
}void main()
{Nixie(6,6);while(1){}
}

  动态数码管的显示

#include <REGX52.H>unsigned char NixieTable[] = {0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F,0x77,0x7F,0x39,0x3F,0x79,0x71};void Delay(unsigned int xms)	//@12.000MHz
{unsigned char data i, j;while(xms){i = 2;j = 239;do{while (--j);} while (--i);xms--;}
}void Nixie(unsigned char Location,Number)
{switch(Location){case 1:P2_4 = 1;P2_3 = 1;P2_2 = 1;break;case 2:P2_4 = 1;P2_3 = 1;P2_2 = 0;break;case 3:P2_4 = 1;P2_3 = 0;P2_2 = 1;break;case 4:P2_4 = 1;P2_3 = 0;P2_2 = 0;break;case 5:P2_4 = 0;P2_3 = 1;P2_2 = 1;break;case 6:P2_4 = 0;P2_3 = 1;P2_2 = 0;break;case 7:P2_4 = 0;P2_3 = 0;P2_2 = 1;break;case 8:P2_4 = 0;P2_3 = 0;P2_2 = 0;break;}P0 = NixieTable[Number];Delay(1);P0 = 0x00;
}void main()
{while(1){Nixie(1,1);Nixie(2,2);Nixie(3,3);}
}

数码管实现表白画面

#include <REGX52.H>unsigned int sum = 3;
unsigned char NixieTable[] = {0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F,0x77,0x7F,0x39,0x3F,0x79,0x71,0x40};void Delay(unsigned int xms)	
{unsigned char data i, j;while(xms){i = 2;j = 239;do{while (--j);} while (--i);xms--;}
}void Nixie(unsigned char Location,Number)
{switch(Location){case 1:P2_4 = 1;P2_3 = 1;P2_2 = 1;break;case 2:P2_4 = 1;P2_3 = 1;P2_2 = 0;break;case 3:P2_4 = 1;P2_3 = 0;P2_2 = 1;break;case 4:P2_4 = 1;P2_3 = 0;P2_2 = 0;break;case 5:P2_4 = 0;P2_3 = 1;P2_2 = 1;break;case 6:P2_4 = 0;P2_3 = 1;P2_2 = 0;break;case 7:P2_4 = 0;P2_3 = 0;P2_2 = 1;break;case 8:P2_4 = 0;P2_3 = 0;P2_2 = 0;break;}P0 = NixieTable[Number];Delay(500);	P0 = 0x00;	
}void Nixie1(unsigned char Location,Number)
{switch(Location){case 1:P2_4 = 1;P2_3 = 1;P2_2 = 1;break;case 2:P2_4 = 1;P2_3 = 1;P2_2 = 0;break;case 3:P2_4 = 1;P2_3 = 0;P2_2 = 1;break;case 4:P2_4 = 1;P2_3 = 0;P2_2 = 0;break;case 5:P2_4 = 0;P2_3 = 1;P2_2 = 1;break;case 6:P2_4 = 0;P2_3 = 1;P2_2 = 0;break;case 7:P2_4 = 0;P2_3 = 0;P2_2 = 1;break;case 8:P2_4 = 0;P2_3 = 0;P2_2 = 0;break;}P0 = NixieTable[Number];Delay(100);	P0 = 0x00;	
}void Nixie2(unsigned char Location,Number)
{switch(Location){case 1:P2_4 = 1;P2_3 = 1;P2_2 = 1;break;case 2:P2_4 = 1;P2_3 = 1;P2_2 = 0;break;case 3:P2_4 = 1;P2_3 = 0;P2_2 = 1;break;case 4:P2_4 = 1;P2_3 = 0;P2_2 = 0;break;case 5:P2_4 = 0;P2_3 = 1;P2_2 = 1;break;case 6:P2_4 = 0;P2_3 = 1;P2_2 = 0;break;case 7:P2_4 = 0;P2_3 = 0;P2_2 = 1;break;case 8:P2_4 = 0;P2_3 = 0;P2_2 = 0;break;}P0 = NixieTable[Number];Delay(1);	P0 = 0x00;	
}void main()
{Nixie(1,5);Nixie(2,2);Nixie(3,0);Nixie(4,16);Nixie(5,1);Nixie(6,3);Nixie(7,1);Nixie(8,4);while(sum--){Nixie1(1,5);Nixie1(2,2);Nixie1(3,0);Nixie1(4,16);Nixie1(5,1);Nixie1(6,3);Nixie1(7,1);Nixie1(8,4);}while(1){Nixie2(1,5);Nixie2(2,2);Nixie2(3,0);Nixie2(4,16);Nixie2(5,1);Nixie2(6,3);Nixie2(7,1);Nixie2(8,4);}
}

http://www.lryc.cn/news/296233.html

相关文章:

  • 代码随想录算法训练营DAY16 | 二叉树 (3)
  • springboot(ssm大学生计算机基础网络教学系统 在线课程系统Java系统
  • 前端架构: 脚手架的开发流程和常用框架
  • 3.0 Hadoop 概念
  • mysql 对于null字段排序处理
  • NLP_语言模型的雏形 N-Gram 模型
  • mac电脑flutter环境配置,解决疑难问题
  • C++ bool 布尔类型
  • DC-7靶机渗透详细流程
  • 提速MySQL:数据库性能加速策略全解析
  • Flink实战六_直播礼物统计
  • Compose | UI组件(十五) | Scaffold - 脚手架
  • Vue-60、Vue技术router-link的replace属性
  • Hive与Presto中的列转行区别
  • 探讨CSDN等级制度:博客等级、原力等级、创作者等级
  • 2.8作业
  • 机器学习中常用的性能度量—— ROC 和 AUC
  • 微服务入门篇:Nacos注册中心(Nacos安装,快速入门,多级存储,负载均衡,环境隔离,配置管理,热更新,集群搭建,nginx反向代理)
  • 解决CORS错误(Spring Boot)
  • NLP入门系列—词嵌入 Word embedding
  • JUnit5单元测试框架提供的注解
  • ThinkPHP 中使用Redis
  • Go语言Gin框架安全加固:全面解析SQL注入、XSS与CSRF的解决方案
  • MySQL数据库基础与SELECT语句使用梳理
  • scikit-learn 1.3.X 版本 bug - F1 分数计算错误
  • Python面试题19-24
  • 《Django+React前后端分离项目开发实战:爱计划》 01 项目整体概述
  • 从零开始 TensorRT(4)命令行工具篇:trtexec 基本功能
  • 基于SpringBoot+Vue的校园博客管理系统
  • 基于 SpringBoot 和 Vue.js 的权限管理系统部署教程