当前位置: 首页 > news >正文

【数据结构】双向带头循环链表实现及总结

简单不先于复杂,而是在复杂之后。

在这里插入图片描述

文章目录

      • 1. 双向带头循环链表的实现
      • 2. 顺序表和链表的区别

1. 双向带头循环链表的实现

List.h

#pragma once
#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <stdbool.h>typedef int LTDataType;typedef struct ListNode
{struct ListNode* next;struct ListNode* prev;LTDataType data;
}LTNode;//初始化
LTNode* ListInit();//打印
void ListPrint(LTNode* phead);//尾插
void ListPushBack(LTNode* phead, LTDataType x);//头插
void ListPushFront(LTNode* phead, LTDataType x);//尾删
void ListPopBack(LTNode* phead);//头删
void ListPopFront(LTNode* phead);//链表判空
bool ListEmpty(LTNode* phead);//链表长度
size_t ListSize(LTNode* phead);//遍历查找(也可以充当修改的功能,所以链表不需要单独实现修改的功能)
LTNode* ListFind(LTNode* phead, LTDataType x);//pos之前插入
void ListInsert(LTNode* pos, LTDataType x);//删除pos位置
void ListErase(LTNode* pos);//链表销毁
void ListDestory(LTNode* phead);

List.c

#define _CRT_SECURE_NO_WARNINGS 1
#include"List.h"LTNode* ListInit()
{LTNode* guard = (LTNode*)malloc(sizeof(LTNode));if (guard == NULL){perror("malloc fail");exit(-1);}guard->next = guard;guard->prev = guard;return guard;
}LTNode* BuyListNode(LTDataType x)
{LTNode* Node = (LTNode*)malloc(sizeof(LTNode));if (Node == NULL){perror("malloc fail");exit(-1);}Node->next = NULL;Node->prev = NULL;Node->data = x;return Node;}void ListPrint(LTNode* phead)
{assert(phead);printf("phead<=>");LTNode* cur = phead->next;while (cur != phead){printf("%d<=>", cur->data);cur = cur->next;}printf("\n");
}void ListPushBack(LTNode* phead, LTDataType x)
{assert(phead);/*LTNode* newnode = BuyListNode(x);LTNode* tail = phead->prev;tail->next = newnode;newnode->prev = tail;phead->prev = newnode;newnode->next = phead;*/ListInsert(phead, x);//双向带头循环链表不需要专门写头插尾插//只需要复用ListInsert的代码即可
}void ListPushFront(LTNode* phead, LTDataType x)
{assert(phead);//LTNode* newnode = BuyListNode(x);//先链接newnode和phead->next节点之间的关系//newnode->next = phead->next;//phead->next->prev = newnode;//phead->next = newnode;//newnode->prev = phead;//如果不想关心顺序LTNode* first = phead->next;phead->next = newnode;newnode->prev = phead;newnode->next = first;first->prev = newnode;ListInsert(phead->next, x);
}void ListPopBack(LTNode* phead)
{assert(phead);assert(!ListEmpty(phead));/*LTNode* tail = phead->prev;LTNode* prev = tail->prev;prev->next = phead;phead->prev = prev;free(tail);tail = NULL;*/ListErase(phead->prev);
}void ListPopFront(LTNode* phead)
{assert(phead);assert(!ListEmpty(phead));/*LTNode* first = phead->next;LTNode* second = first->next;phead->next = second;second->prev = phead;free(first);first = NULL;*/ListErase(phead->next);
}bool ListEmpty(LTNode* phead)
{assert(phead);return phead->next == phead;
}size_t ListSize(LTNode* phead)
{assert(phead);size_t n = 0;LTNode* cur = phead->next;while (cur != phead){++n;cur = cur->next;}return n;
}LTNode* ListFind(LTNode* phead, LTDataType x)
{assert(phead);size_t n = 0;LTNode* cur = phead->next;while (cur != phead){if (cur->data == x){return cur;}}
}void ListInsert(LTNode* pos, LTDataType x)
{assert(pos);LTNode* prev = pos->prev;LTNode* newnode = BuyListNode(x);//prev newnode pos 链接prev->next = newnode;newnode->prev = prev;newnode->next = pos;pos->prev = newnode;
}void ListErase(LTNode* pos)
{assert(pos);LTNode* prev = pos->prev;LTNode* next = pos->next;prev->next = next;next->prev = prev;free(pos);//pos = NULL;
}//可以传二级指针,内部置空头结点
//建议:也可以考虑一级指针,让调用 ListDestory 的人置空(可以保持接口一致性)
void ListDestory(LTNode* phead)
{assert(phead);LTNode* cur = phead->next;while (cur != phead){LTNode* next = cur->next;free(cur);cur = next;}free(phead);//phead = NULL;
}

Test.c

#define _CRT_SECURE_NO_WARNINGS 1
#include"List.h"void TestList1()
{LTNode* plist = ListInit();ListPushBack(plist, 1);ListPushBack(plist, 2);ListPushBack(plist, 3);ListPushBack(plist, 4);ListPrint(plist);ListPushFront(plist, 10);ListPushFront(plist, 20);ListPushFront(plist, 30);ListPushFront(plist, 40);ListPrint(plist);ListPopBack(plist);ListPopBack(plist);ListPopBack(plist);ListPopBack(plist);ListPrint(plist);}void TestList2()
{LTNode* plist = ListInit();ListPushBack(plist, 1);ListPushBack(plist, 2);ListPushBack(plist, 3);ListPushBack(plist, 4);ListPrint(plist);ListPopFront(plist);ListPopFront(plist);ListPrint(plist);ListPopFront(plist);ListPopFront(plist);ListPrint(plist);}int main()
{TestList2();return 0;
}

2. 顺序表和链表的区别

不同点顺序表链表
存储空间物理上一定连续逻辑上连续,但物理上不一定连续
随机访问支持 O(1)不支持 O(N)
任意位置插入或删除元素可能需要搬移元素,效率低 O(N)只需修改指针指向
插入动态顺序表,空间不够时需要扩容没有容量的概念
应用场景元素高效存储+频繁访问任意位置插入和删除频繁
缓存利用率

备注:缓存利用率参考存储体系结构以及局部原理性

顺序表优点:

  1. 尾插尾删效率很高。
  2. 随机访问。(用下标访问)’
  3. 相比链表结构:cpu高速缓存命中率更高。

顺序表缺点:

  1. 头部和中部插入删除效率低。 —O(N)
  2. 扩容。 性能消耗+空间浪费

链表优点:

  1. 任意位置插入删除效率很高。 O(1)
  2. 按需申请释放。

链表缺点:

  1. 不支持随机访问

在这里插入图片描述
cpu执行指令,不会直接访问内存。

  1. 先看数据在不在三级缓存,在(命中)。直接访问
  2. 不在(不命中),先加载到缓存,再访问。当要访问一个数据时,不会只访问这个数据的几个字节,而是从这个位置开始的一段都加载进去缓存。(加载多少取决于硬件)

与程序员相关CPU缓存知识

http://www.lryc.cn/news/293569.html

相关文章:

  • 创建自己的Hexo博客
  • 音箱、功放播放HDMI音频解决方案之HDMI音频分离器HHA
  • 天猫数据分析:2023年坚果炒货市场年销额超71亿,混合坚果成多数消费者首选
  • YouTrack 用户登录提示 JIRA 错误
  • 题目 1163: 排队买票
  • 【lesson9】高并发内存池Page Cache层释放内存的实现
  • Java基础面试题-6day
  • 【Oracle 集群】RAC知识图文详细教程(三)--RAC工作原理和相关组件
  • 二级C语言笔试2
  • 如何计算两个指定日期相差几年几月几日
  • 再识C语言 DAY13 【递归函数(超详细)】
  • 【Linux】权限管理
  • 地理坐标系、空间坐标系、epsg查询网站
  • docker 容器指定主机网段
  • 零基础Vue框架上手;git,node,yarn安装
  • 十分钟学会用springboot制作微信小程序富文本编辑器
  • 【BBF系列协议】TR181-1 TR069的设备数据模型
  • Elasticsearch(简称ES)性能优化 实践
  • 《跨越阶层,小白选专业的逻辑:揭秘家庭背景与个人发展的秘密联系》
  • Python调用pyspark报错整理
  • 快递员的烦恼 - 华为OD统一考试
  • css1基础选择器
  • 【C语言】内联函数总结
  • 鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之MenuItemGroup组件
  • 【Linux多线程编程】互斥锁及其使用
  • RabbitMQ_00000
  • 【linux】docker下homeassistant和nodered安装及配置
  • Qt扩展-muParser数学公式解析
  • 【Matplotlib】figure方法之图形的保存
  • 数据库管理-第142期 DBA?DBA!(20240131)