当前位置: 首页 > news >正文

Flink中StateBackend(工作状态)与Checkpoint(状态快照)的关系

State Backends

由 Flink 管理的 keyed state 是一种分片的键/值存储,每个 keyed state 的工作副本都保存在负责该键的 taskmanager 本地中。另外,Operator state 也保存在机器节点本地。Flink 定期获取所有状态的快照,并将这些快照复制到持久化的位置,例如分布式文件系统。

如果发生故障,Flink 可以恢复应用程序的完整状态并继续处理,就如同没有出现过异常。

Flink 管理的状态存储在 state backend 中。Flink 有两种 state backend 的实现:

  • 一种基于 RocksDB 内嵌 key/value 存储将其工作状态保存在磁盘上的,将其状态快照持久化到(分布式)文件系统;
  • 另一种基于堆的 state backend,将其工作状态保存在 Java 的堆内存中。这种基于堆的 state backend 有两种类型:
    • FsStateBackend,将其状态快照持久化到(分布式)文件系统;
    • MemoryStateBackend,它使用 JobManager 的堆保存状态快照。

在这里插入图片描述

当使用基于堆的 state backend 保存状态时,访问和更新涉及在堆上读写对象。但是对于保存在 RocksDBStateBackend 中的对象,访问和更新涉及序列化和反序列化,所以会有更大的开销。但 RocksDB 的状态量仅受本地磁盘大小的限制。还要注意,只有 RocksDBStateBackend 能够进行增量快照,这对于具有大量变化缓慢状态的应用程序来说是大有裨益的。

所有这些 state backends 都能够异步执行快照,这意味着它们可以在不妨碍正在进行的流处理的情况下执行快照。

Checkpoint

Flink 定期对每个算子的所有状态进行持久化快照,并将这些快照复制到更持久的地方,例如分布式文件系统。 如果发生故障,Flink 可以恢复应用程序的完整状态并恢复处理,就好像没有出现任何问题一样。

这些快照的存储位置是通过作业_checkpoint storage_定义的。 有两种可用检查点存储实现:一种持久保存其状态快照 到一个分布式文件系统,另一种是使用 JobManager 的堆。

在这里插入图片描述

Flink不同版本StateBackend(状态)与Checkpoint Storage(快照) 关系

在Flink1.14之前StateBackend与Checkpoint Storage 耦合在一起,但在Flink1.14之后把StateBackend与Checkpoint Storage 实现了解耦,使逻辑更加清晰。

Flink1.14之前

  • 基于 RocksDB state backend,状态快照持久化到(分布式)文件系统;
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStateBackend(new RocksDBStateBackend("hdfs://namenode:8020/data/rocksdb/ck", true));//true: 增量checkpoint; false:全量checkpoint
env.setStateBackend(new RocksDBStateBackend("file:///data/rocksdb/ck", true));//本地文件系统
  • 基于heap state backend,状态快照持久化到(分布式)文件系统;
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStateBackend(new FsStateBackend("hdfs://namenode:8020/data/fs/ck"));//远程分布式文件系统
env.setStateBackend(new FsStateBackend("file:///data/fs/ck"));//本地文件系统
  • 基于heap state backend,使用 JobManager 的堆保存状态快照。
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStateBackend(new MemoryStateBackend());

Flink1.14之后(推荐使用)

  • 基于 RocksDB state backend,状态快照持久化到(分布式)文件系统;
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStateBackend(new EmbeddedRocksDBStateBackend(true));//true: 增量checkpoint; false:全量checkpoint
env.getCheckpointConfig().setCheckpointStorage("hdfs://namenode:8020/data/rocksdb/ck");//远程分布式文件系统
env.getCheckpointConfig().setCheckpointStorage("file:///data/rocksdb/ck");//本地文件系统

flink-conf.yaml配置:

 state.backend: rocksdbstate.checkpoints.dir: hdfs:///checkpoints/
  • 基于heap state backend,状态快照持久化到(分布式)文件系统;
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStateBackend(new HashMapStateBackend());
env.getCheckpointConfig().setCheckpointStorage("hdfs://namenode:8020/data/fs/ck");//远程分布式文件系统
env.getCheckpointConfig().setCheckpointStorage("file:///data/fs/ck");//本地文件系统

flink-conf.yaml配置:

 state.backend: hashmapstate.checkpoints.dir: hdfs:///checkpoints/
  • 基于heap state backend,使用 JobManager 的堆保存状态快照。
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStateBackend(new HashMapStateBackend());
env.getCheckpointConfig().setCheckpointStorage(new JobManagerCheckpointStorage());

flink-conf.yaml配置:

 state.backend: hashmapstate.checkpoint-storage: jobmanager

总结

  • 默认情况下 checkpoint 是禁用的,需要手动开启:

    env.enableCheckpointing(long interval, CheckpointingMode mode)

  • 默认情况下,StateBackend是保持在 TaskManagers 的heap内存中,checkpoint 保存在 JobManager 的内存中。
  • 只有基于 RocksDB state backend的状态快照才支持增量checkpoint,基于heap的并不支持
  • Flink状态分为Keyed State和非keyed State:
    • Keyed State,可以使用RocksDB state backend和heap state backend。 所有支持的状态类型如下所示:

      • ValueState: 保存一个可以更新和检索的值(如上所述,每个值都对应到当前的输入数据的 key,因此算子接收到的每个 key 都可能对应一个值)。 这个值可以通过 update(T) 进行更新,通过 T value() 进行检索。

      • ListState: 保存一个元素的列表。可以往这个列表中追加数据,并在当前的列表上进行检索。可以通过 add(T) 或者 addAll(List) 进行添加元素,通过 Iterable get() 获得整个列表。还可以通过 update(List) 覆盖当前的列表。

      • ReducingState: 保存一个单值,表示添加到状态的所有值的聚合。接口与 ListState 类似,但使用 add(T) 增加元素,会使用提供的 ReduceFunction 进行聚合。

      • AggregatingState<IN, OUT>: 保留一个单值,表示添加到状态的所有值的聚合。和 ReducingState 相反的是, 聚合类型可能与 添加到状态的元素的类型不同。 接口与 ListState 类似,但使用 add(IN) 添加的元素会用指定的 AggregateFunction 进行聚合。

      • MapState<UK, UV>: 维护了一个映射列表。 你可以添加键值对到状态中,也可以获得反映当前所有映射的迭代器。使用 put(UK,UV) 或者 putAll(Map<UK,UV>) 添加映射。 使用 get(UK) 检索特定 key。 使用 entries(),keys() 和 values() 分别检索映射、键和值的可迭代视图。你还可以通过 isEmpty() 来判断是否包含任何键值对。

    • 非keyed State,不使用 RocksDB state backend,需要保存在内存中,包括:

      • 算子状态 (Operator State);
      • 广播状态 (Broadcast State),尤其需要考虑保证充足的内存;
      • 自定义 Operator State:CheckpointedFunction 接口提供了访问 non-keyed state 的方法,需要实现如下两个方法:

        void snapshotState(FunctionSnapshotContext context) throws Exception;
        void initializeState(FunctionInitializationContext context) throws Exception;

参考:

Fault Tolerance via State Snapshots

http://www.lryc.cn/news/292897.html

相关文章:

  • 【C语言刷题系列】喝汽水问题
  • [C++] C++ 11的functional模块介绍和使用案例
  • kubernetes基本概念和操作
  • 20240128周报-网络太杂,Tomcat太难
  • DES加密原理
  • react 之 useCallback
  • OfficeWeb365 Readfile 任意文件读取漏洞复现
  • UnityShader(十三)Unity内置的函数
  • 【开源】基于Qt5的ROS1/ROS2人机交互软件(支持地图编辑/多点导航)
  • Spring和SpringBoot的区别是什么
  • 布局技巧及CSS初始化
  • excel怎么设置密码?轻松保护您的工作表
  • 鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之TimePicker组件
  • Springboot集成Camunda并完成一条流程实例
  • 宠物用品/宠物自动饮水机方案
  • git小白进阶之路
  • 哈希表——C++
  • LabVIEW叶片厚度远程监控
  • el-table动态合并
  • 【DevOps】产品需求文档(PRD)与常见原型软件
  • 【QT+QGIS跨平台编译】之十八:【Expat+Qt跨平台编译】(一套代码、一套框架,跨平台编译)
  • 20240203
  • 【Spark实践6】特征转换FeatureTransformers实践Scala版--补充算子
  • 【知识点】设计模式
  • WPS WORD 宏导出高亮文本
  • python 基础知识点(蓝桥杯python科目个人复习计划32)
  • (算法二)滑动窗口
  • 【Go语言成长之路】Hello Go
  • 大数据应用开发3-Scala笔记1
  • android 网络拦截器统一处理请求参数和返回值加解密实现