当前位置: 首页 > news >正文

Opencv轮廓检测运用与理解

目录

引入

基本理解

加深理解

①比如我们可以获取我们的第一个轮廓,只展示第一个轮廓

②我们还可以用一个矩形把我们的轮廓给框出来

③计算轮廓的周长和面积


引入

顾名思义,就是把我们图片的轮廓全部都描边出来

也就是我们在日常生活中面部识别的时候会有一个框,那玩意就是

基本理解

我们还是通过例子来基本的理解以下opencv是如何实现轮廓识别的


这是我们的原图像  test.png


实现代码

cv2.findContours(img,mode,method)

img:轮廓检索模式:

  • 传入的图像

mode:轮廓检索模式:

  • RETR_EXTERNAL :只检索最外面的轮廓;
  • RETR_LIST:检索所有的轮廓,并将其保存到一条链表当中;
  • RETR_CCOMP:检索所有的轮廓,并将他们组织为两层:顶层是各部分的外部边界,第二层是空洞的边界;
  • RETR_TREE:检索所有的轮廓,并重构嵌套轮廓的整个层次;(一般只用这种)

method:轮廓逼近方法

  • CHAIN_APPROX_NONE:以Freeman链码的方式输出轮廓,输出完整的轮廓(一般用这种)
  • CHAIN_APPROX_SIMPLE:压缩水平的、垂直的和斜的部分,也就是,函数只保留他们的终点部分。(即只保留轮廓点)

返回的值:

contours
获取到的轮廓点
hierarchy
   层数(可以不用管)

cv2.drawContours(图像,轮廓,轮廓索引,颜色模式,线条厚度)

注意:会影响我们传入的原图像,记得定义一个临时图像传入进去

import cv2img = cv2.imread("test.png")
img = cv2.resize(img,(500,400))
# 转换为灰度图
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# 阈值处理,让图像颜色只有2种颜色  提高准确性
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
# 进行轮廓处理
# cv2.findContours返回两个值
# contours 轮廓点(是个列表)
# hierarchy 层数(用不到)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
# 轮廓描边后会影响原图,所以我们定义一个临时的图片
temp_img = img.copy()
# 进行轮廓描边
# contours 获取到的轮廓点
# -1 表示的画出所有的轮廓,eg:0就表示我们列表中第一个轮廓
# (0, 0, 255) 表示我们用红色线条来绘画 bgr
# 2 表示线条粗细
res = cv2.drawContours(temp_img, contours, -1, (0, 0, 255), 2)cv2.imshow("res",res)
cv2.waitKey()
cv2.destroyAllWindows()

结果:


加深理解

除了最基本的用法,我们还有很多扩充的用法

①比如我们可以获取我们的第一个轮廓,只展示第一个轮廓

contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
# 取出列表中第一个
con = contours[0]
# 绘制
res = cv2.drawContours(temp_img, con, -1, (0, 0, 255), 2)
# 展示
cv2.imshow("res",res)

我们可以看到,只出现了我们列表第一个的轮廓


②我们还可以用一个矩形把我们的轮廓给框出来

原图像:

实现代码:

img = cv2.imread('contours.png')gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
binary, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt = contours[0]# 返回我们要绘制的矩形特征
x,y,w,h = cv2.boundingRect(cnt)
# 绘制矩形
img = cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
cv_show(img,'img')

x,y,w,h = cv2.boundingRect(cnt)

返回我们的x和y的坐标  以及宽和高

cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)

绘制我们的矩形

(x,y)表示我们的开始坐标

(x+w,y+h)表示我们的边

最后会自动把对边连接起来形成一个矩形

结果:


③计算轮廓的周长和面积

这个很简单,就是调用两个函数就能实现对应得功能

cnt = contours[0]
#面积
cv2.contourArea(cnt)
#周长,True表示闭合的
cv2.arcLength(cnt,True)

http://www.lryc.cn/news/285505.html

相关文章:

  • Java 8的新特性简单分享(后续有系列篇~敬请期待)
  • 计算机网络-计算机网络的概念 功能 发展阶段 组成 分类
  • 246.【2023年华为OD机试真题(C卷)】分月饼(动态规划-JavaPythonC++JS实现)
  • java大数据hadoop2.9.2 Linux安装mariadb和hive
  • Docker部署微服务问题及解决
  • Android: alarm定时很短时,比如500ms,测试执行mPowerManager.forceSuspend()后,系统不会suspend
  • 一个简单好用的C语言单元测试框架-Unity
  • ubuntu系统 vscode 配置c/c++调试环境
  • 算法练习-A+B/财务管理/实现四舍五入/牛牛的菱形字符(题目链接+题解打卡)
  • XSS语句
  • AD导出BOM表 导出PDF
  • linux 的nobody是什么用户? 对安全有没有影响?
  • 2024年华数杯国际数学建模B 光伏电(Problem B: Photovoltaic Power)完整思路以及源代码分享
  • 在 Spring MVC 中,用于接收前端传递的参数的注解有以下几种
  • K8s常用命令
  • MySQL的基本操作
  • 【b站咸虾米】chapter4_vue组件_新课uniapp零基础入门到项目打包(微信小程序/H5/vue/安卓apk)全掌握
  • Java网络编程——UDP通信原理
  • Spring | Srping AOP (AOP简介、动态代理、基于“代理类”的AOP实现)
  • StarRocks 生成列:百倍提速半结构化数据分析
  • 数据结构---数组
  • 知识笔记(八十四)———链式语句中fetchSql和force和bind用法
  • 为什么要用B+树
  • Android 通过adb命令查看应用流量
  • 超全的测试类型详解,再也不怕面试答不出来了!
  • 【Linux】
  • 「 网络安全常用术语解读 」网络攻击者的战术、技术和常识知识库ATTCK详解
  • Java.lang.Integer类详解
  • GitFlow工作流
  • GitHub Copilot 与 OpenAI ChatGPT 的区别及应用领域比较