当前位置: 首页 > news >正文

基于BERT对中文邮件内容分类

用BERT做中文邮件内容分类

    • 项目背景与意义
    • 项目思路
    • 数据集介绍
    • 环境配置
    • 数据加载与预处理
    • 自定义数据集
    • 模型训练
      • 加载BERT预训练模型
      • 开始训练
    • 预测效果

项目背景与意义

本文是《用BERT做中文邮件内容分类》系列的第二篇,该系列项目持续更新中。系列的起源是《使用PaddleNLP识别垃圾邮件》项目,旨在解决企业面临的垃圾邮件问题,通过深度学习方法探索多语言垃圾邮件的内容、标题提取与分类识别。

在本篇文章中,我们使用PaddleNLP的BERT预训练模型,根据提取的中文邮件内容判断邮件是否为垃圾邮件。该项目的思路在于基于前一篇项目的中文邮件内容提取,在98.5%的垃圾邮件分类器基线上,通过BERT的finetune进一步提升性能。
在这里插入图片描述

项目思路

在《使用PaddleNLP识别垃圾邮件(一)》项目的基础上,我们使用BERT进行finetune,力求在LSTM的98.5%的基线上进一步提升准确率。同时,文章中详细介绍了BERT模型的原理和PaddleNLP对BERT模型的应用,读者可以参考项目PaddleNLP2.0:BERT模型的应用进行更深入的了解。

本项目参考了陆平老师的项目应用BERT模型做短文本情绪分类(PaddleNLP 2.0),但由于PaddleNLP版本迭代的原因,进行了相应的调整和说明。

数据集介绍

我们使用了TREC 2006 Spam Track Public Corpora,这是一个公开的垃圾邮件语料库,包括英文数据集(trec06p)和中文数据集(trec06c)。在本项目中,我们仅使用了TREC 2006提供的中文数据集进行演示。数据集来源于真实邮件,保留了邮件的原有格式和内容。

除了TREC 2006外,还有TREC 2005和TREC 2007的英文垃圾邮件数据集,但本项目仅使用了TREC 2006提供的中文数据集。数据集文件目录形式如下:

trec06c
│
├── data
│   │   000
│   │   001
│   │   ...
│   └───215
├── delay
│   │   index
└── full│   index

邮件内容样本示例:

负责人您好我是深圳金海实业有限公司...
GG非常好的朋友H在计划马上的西藏自助游...

环境配置

本项目基于Paddle 2.0编写,如果你的环境不是本版本,请先参考官网安装Paddle 2.0。以下是环境配置代码:

# 导入相关的模块
import re
import jieba
import os
import random
import paddle
import paddlenlp as ppnlp
from paddlenlp.data import Stack, Pad, Tuple
import paddle.nn.functional as F
import paddle.nn as nn
from visualdl import LogWriter
import numpy as np
from functools import partial

数据加载与预处理

项目中使用了PaddleNLP的BertTokenizer进行数据处理,该tokenizer可以将原始输入文本转化成模型可接受的输入数据格式。以下是数据加载与预处理的代码:

# 解压数据集
!tar xvf data/data89631/trec06c.tgz# 去掉非中文字符
def clean_str(string):string = re.sub(r"[^\u4e00-\u9fff]", " ", string)string = re.sub(r"\s{2,}", " ", string)return string.strip()# 从指定路径读取邮件文件内容信息
def get_data_in_a_file(original_path, save_path='all_email.txt'):email = ''f = open(original_path, 'r', encoding='gb2312', errors='ignore')for line in f:line = line.strip().strip('\n')line = clean_str(line)email += linef.close()return email[-200:]# 读取标签文件信息
f = open('trec06c/full/index', 'r')
for line in f:str_list = line.split(" ")if str_list[0] == 'spam':label = '0'elif str_list[0] == 'ham':label = '1'text = get_data_in_a_file('trec06c/full/' + str(str_list[1].split("\n")[0]))with open("all_email.txt", "a+") as f:f.write(text + '\t' + label + '\n')

自定义数据集

在项目中,我们需要自定义数据集,并使其数据格式与使用ppnlp.datasets.ChnSentiCorp.get_datasets加载后完全一致。以下是自定义数据集的代码:

class SelfDefinedDataset(paddle.io.Dataset):def __init__(self, data):super(SelfDefinedDataset, self).__init__()self.data = datadef __getitem__(self, idx):return self.data[idx]def __len__(self):return len(self.data)def get_labels(self):return ["0", "1"]def txt_to_list(file_name):res_list = []for line in open(file_name):res_list.append(line.strip().split('\t'))return res_listtrainlst = txt_to_list('train_list.txt')
devlst = txt_to_list('eval_list.txt')
testlst = txt_to_list('test_list.txt')train_ds, dev_ds, test_ds = SelfDefinedDataset.get_datasets([trainlst, devlst, testlst])

模型训练

加载BERT预训练模型

项目中使用了PaddleNLP提供的BertForSequenceClassification模型进行文本分类的Fine-tune。由于垃圾邮件识别是二分类问题,所以设置num_classes为2。

以下是加载BERT预训练模型的代码:

# 加载预训练模型
model = ppnlp.transformers.BertForSequenceClassification.from_pretrained("bert-base-chinese", num_classes=2)

开始训练

为了监控训练过程,引入了VisualDL记录训练log信息。以下是开始训练的代码:

# 设置训练超参数
learning_rate = 1e-5
epochs = 10
warmup_proption = 0.1
weight_decay = 0.01num_training_steps = len(train_loader) * epochs
num_warmup_steps = int(warmup_proption * num_training_steps)def get_lr_factor(current_step):if current_step < num_warmup_steps:return float(current_step) / float(max(1, num_warmup_steps))else:return max(0.0,float(num_training_steps - current_step) /float(max(1, num_training_steps - num_warmup_steps)))# 学习率调度器
lr_scheduler = paddle.optimizer.lr.LambdaDecay(learning_rate, lr_lambda=lambda current_step: get_lr_factor(current_step))# 优化器
optimizer = paddle.optimizer.AdamW(learning_rate=lr_scheduler,parameters=model.parameters(),weight_decay=weight_decay,apply_decay_param_fun=lambda x: x in [p.name for n, p in model.named_parameters()if not any(nd in n for nd in ["bias", "norm"])])# 损失函数
criterion = paddle.nn.loss.CrossEntropyLoss()# 评估函数
metric = paddle.metric.Accuracy()# 训练过程
global_step = 0
with LogWriter(logdir="./log") as writer:for epoch in range(1, epochs + 1):    for step, batch in enumerate(train_loader, start=1):input_ids, segment_ids, labels = batchlogits = model(input_ids, segment_ids)loss = criterion(logits, labels)probs = F.softmax(logits, axis=1)correct = metric.compute(probs, labels)metric.update(correct)acc = metric.accumulate()global_step += 1if global_step % 50 == 0:print("global step %d, epoch: %d, batch: %d, loss: %.5f, acc: %.5f" % (global_step, epoch, step, loss, acc))writer.add_scalar(tag="train/loss", step=global_step, value=loss)writer.add_scalar(tag="train/acc", step=global_step, value=acc)loss.backward()optimizer.step()lr_scheduler.step()optimizer.clear_gradients()eval_loss, eval_acc = evaluate(model, criterion, metric, dev_loader)writer.add_scalar(tag="eval/loss", step=epoch, value=eval_loss)writer.add_scalar(tag="eval/acc", step=epoch, value=eval_acc)

可以看到,在第2个epoch后验证集准确率已经达到99.4%以上,在第3个epoch就能达到99.6%以上。

预测效果

完成模型训练后,我们可以使用训练好的模型对测试集进行预测。以下是预测效果的代码:

data = ['您好我公司有多余的发票可以向外代开,国税,地税,运输,广告,海关缴款书如果贵公司,厂,有需要请来电洽谈,咨询联系电话,罗先生谢谢顺祝商祺']
label_map = {0: '垃圾邮件', 1: '正常邮件'}predictions = predict(model, data, tokenizer, label_map, batch_size=32)
for idx, text in enumerate(data):print('预测内容: {} \n邮件标签: {}'.format(text, predictions[idx]))

预测效果良好,一个验证集准确率高达99.6%以上、基于BERT的中文邮件内容分类顺利完成!

以上是本文的全部内容,希望对读者理解如何使用BERT进行中文邮件内容分类有所帮助。欢迎交流指导!

http://www.lryc.cn/news/285227.html

相关文章:

  • 【EFCore仓储模式】介绍一个EFCore的Repository实现
  • oracle篇—19c新特性自动索引介绍
  • 稳定性——JE流程
  • 【控制篇 / 分流】(7.4) ❀ 03. 对国内和国际IP网段访问进行分流 ❀ FortiGate 防火墙
  • 01-开始Rust之旅
  • 华南理工大学数字信号处理实验实验一(薛y老师版本)matlab源码
  • 一篇文章看懂云渲染,云渲染是什么?云渲染如何计费?云渲染怎么选择
  • C++进阶--哈希表模拟实现unordered_set和unordered_map
  • Elasticsearch各种高级文档操作
  • 激光无人机打击系统——光束控制和指向系统
  • pycharm import torch
  • flask 与小程序 购物车删除和编辑库存功能
  • 蓝桥杯真题(Python)每日练Day3
  • 结构体大揭秘:代码中的时尚之选(上)
  • 【unity学习笔记】语音驱动blendershape
  • docker常用基础命令
  • 自动驾驶中的坐标系
  • js数组的截取和合并
  • 2024美赛数学建模思路 - 案例:感知机原理剖析及实现
  • 大中台,小前台:打造快速响应市场的企业竞争力
  • SpringCloud Alibaba 深入源码 - Nacos 和 Eureka 的区别(健康检测、服务的拉取和订阅)
  • Java复习_3
  • 分类预测 | Matlab实现KPCA-EBWO-SVM分类预测,基于核主成分分析和改进的白鲸优化算法优化支持向量机分类预测
  • 力扣hot100 找到字符串中所有字母异位词 滑动窗口 双指针 一题双解
  • PG DBA培训21:PostgreSQL性能优化之基准测试
  • 使用excel从1-2048中随机选择1个整数,并展示与其对应的单词
  • c++可调用对象、function类模板与std::bind
  • 【高危】Apache Solr 环境变量信息泄漏漏洞
  • Python中的卷积神经网络(CNN)入门
  • vulnhub靶机HotelWW