当前位置: 首页 > news >正文

【性能】【算法】for循环,性能提高

目录

■提高性能的方法

・原理

1.1.java处理中,计算阶乘,为什么展开循环可以提高效率

1.2.从cpu的流水线角度,再说明一下

1.3.介绍一下 cup的指令流水线

■实际运用

1.求和

代码

结果  

2.求阶乘 (性能提高效果明显)

代码

结果

测试电脑性能

自己电脑

堆内存并非越大,效率越高!!!!!!

电脑001

电脑002(虚拟机,公用一个cup)

媳妇的电脑

堆内存并非越大,效率越高!!!!!!!

爸爸的电脑


====

■提高性能的方法

通过展开循环,提高效率。

(算法,CPU原理)

・原理

1.1.java处理中,计算阶乘,为什么展开循环可以提高效率

展开循环可以提高效率的原因是避免了重复的循环操作。在计算阶乘的过程中,我们需要对一个数从1乘到该数本身,如果使用循环来实现这个操作,就需要每次都进行一次循环迭代,直到达到该数。而展开循环的方式,可以直接将每一次循环的结果串联起来,避免了重复的循环操作。

---

举个例子,假设要计算5的阶乘。使用循环的方式,需要进行5次循环迭代,分别计算1x2、2x3、3x4、4x5,最后得到120。而展开循环的方式,可以直接计算1x2x3x4x5,得到结果120,避免了重复的循环操作。

--

因此,展开循环可以减少循环迭代次数,提高运算效率。但需要注意的是,展开循环在处理大数阶乘时可能会造成溢出问题,需要进行适当的优化处理。

1.2.从cpu的流水线角度,再说明一下

https://rcwap.com/newsdetail_630.html

从CPU流水线的角度来看,展开循环可以提高效率的原因是减少了分支(branch)导致的流水线停顿(pipeline stall)。

----

在计算阶乘的过程中,循环结构通常会引入条件分支,用于判断循环是否继续。当分支预测(branch prediction)失败时,CPU的流水线会发生停顿,等待分支判断结果返回。这会导致流水线中断,浪费了一些CPU周期。

----

而如果采用展开循环的方式,即在代码中展开多个循环迭代,相当于将多个循环迭代的结果直接写入代码中。这样就避免了循环和条件分支的存在,减少了分支预测失败的机会,减少了流水线停顿。

---

通过减少流水线停顿,CPU可以更充分地利用流水线的并行性和吞吐量,提高指令的执行效率,加快计算阶乘的速度。

---

但是需要注意,展开循环也会增加代码量,可能会导致代码膨胀和缓存不命中等问题,因此在选择是否展开循环时需要综合考虑代码大小、缓存使用情况以及具体的计算规模来做出决策。

1.3.介绍一下 cup的指令流水线

CUP(Control Unit Pipeline)是计算机的一种指令流水线执行方式。它将计算机的指令执行过程分为多个阶段,并且每个阶段由一个专门的硬件单元来处理。这种流水线执行方式可以提高计算机的效率和性能。

CUP的指令流水线一般包括以下几个阶段:

  1. 取指令阶段(Instruction Fetch):从指令存储器中读取下一条指令,并将其送入指令译码器。

  2. 指令译码阶段(Instruction Decode):将指令译码为包含操作码和操作数的控制信号。

  3. 执行阶段(Execution):根据控制信号执行指令中的操作,并产生需要的结果。

  4. 访存阶段(Memory Access):如果指令需要访问内存,则进行内存读取或写入操作。

  5. 写回阶段(Write Back):将执行结果写回到寄存器文件或存储器中。

CUP的指令流水线可以并行地执行多条指令,从而实现指令的重叠执行。当一条指令在某个阶段执行时,下一条指令可以开始在前一个阶段进行处理。这样可以大大缩短指令的执行时间,提高计算机的吞吐量。

然而,CUP的指令流水线也存在一些问题。例如,由于指令之间可能存在数据依赖关系,需要进行冒险(Hazard)处理;还可能存在控制依赖问题,需要进行分支预测等。因此,在设计CUP指令流水线时,需要考虑这些问题,并采取相应的策略来解决。

xxx

https://rcwap.com/newsdetail_630.html

=======

■实际运用

1.求和

代码

package com.sxz.study.alogrithm;public class TestAlogrithom {public static void main(String[] args) {long timeBegin = 0;long timeEnd =0;timeBegin = System.currentTimeMillis();long result1 = calc001(1000000000);System.out.println(result1);timeEnd = System.currentTimeMillis();System.out.println(timeEnd-timeBegin);timeBegin = System.currentTimeMillis();long result2 = calc002(1000000000);System.out.println(result2);timeEnd = System.currentTimeMillis();System.out.println(timeEnd-timeBegin);}public static long calc001(int sumNumber) {long count = 0;for (int i = 1; i <= sumNumber; i++) {count += i;}return count;}public static long calc002(int sumNumber) {long count1 = 0, count2 = 0, count3 = 0, count4 = 0;// 假设,sumNuber 是4的倍数for (int i = 1; i <= sumNumber; i+=4) {count1 += i;count2 += i+1;count3 += i+2;count4 += i+3;}return count1 + count2 + count3 + count4;}}

结果  

性能提高 了近14% (299258

(299-258)/ 299 = 13.71%

299 / 258 =1.1589

改善后,速度是之前的1.16倍

500000000500000000
299
500000000500000000
258

----------------------

2.求阶乘 (性能提高效果明显)

代码

package com.sxz.study.alogrithm;import java.math.BigDecimal;public class TestAlogrithom2 {public static void main(String[] args) {long timeBegin = 0;long timeEnd =0;timeBegin = System.currentTimeMillis();BigDecimal result1 = calc001(10000);System.out.println(result1);timeEnd = System.currentTimeMillis();System.out.println((timeEnd-timeBegin)+"ms");timeBegin = System.currentTimeMillis();BigDecimal result2 = calc002(10000);System.out.println(result2);timeEnd = System.currentTimeMillis();System.out.println((timeEnd-timeBegin)+"ms");}public static BigDecimal calc001(int sumNumber) {BigDecimal count = new BigDecimal(1);for (int i = 1; i <= sumNumber; i++) {count = count.multiply(new BigDecimal(i));}return count;}public static BigDecimal calc002(int sumNumber) {BigDecimal count1 = new BigDecimal(1);BigDecimal count2 = new BigDecimal(1);BigDecimal count3 = new BigDecimal(1);BigDecimal count4 = new BigDecimal(1);// 假设,sumNuber 是4的倍数for (int i = 1; i <= sumNumber; i+=4) {count1 = count1.multiply(new BigDecimal(i));count2 = count2.multiply(new BigDecimal(i+1));count3 = count3.multiply(new BigDecimal(i+2));count4 = count4.multiply(new BigDecimal(i+3));}return count1.multiply(count2).multiply(count3).multiply(count4);}}

结果

性格提高了近69%%  (92 ⇒ 29)

(92-29)/ 2 = 68.47

92/29 = 3.17

改善后,速度是之前的三倍。

2846..........0000
92
2846..........0000
29

===

测试电脑性能

自己电脑

小米 笔记本 Pro 点击excel 文件夹 未响应 卡死 如何解决_小米笔记本文件夹未响应-CSDN博客

==

命令行执行

堆内存并非越大,效率越高!!!!!!

==

电脑001

电脑002(虚拟机,公用一个cup)

70~110,30~60

媳妇的电脑

chcp 65001

javac -encoding UTF-8 -d . TestAlogrithom2.java

java com.sxz.study.alogrithm.TestAlogrithom2 | findstr "ms"

java -Xms2g com.sxz.study.alogrithm.TestAlogrithom2 | findstr "ms"

堆内存并非越大,效率越高!!!!!!!

指定堆内存 2g(-xms2g)

78,31

指定堆内存 256m(-xms256m)

78,16

不指定堆内存

79,15

====

爸爸的电脑

xx

==

http://www.lryc.cn/news/278838.html

相关文章:

  • 【入门】字符串对比(UPC)
  • thinkphp美容SPA管理系统源码带文字安装教程
  • apache共享目录文件配置
  • kotlin take 和 drop
  • SQL-DML增删改
  • 雷达信号处理——恒虚警检测(CFAR)
  • k8s的yaml文件中的kind类型都有哪些?(详述版Part1/2)
  • 企业培训系统源码:构建智能、可扩展的学习平台
  • 设计模式—行为型模式之状态模式
  • Linux习题3
  • SpringBoot+策略模式实现多种文件存储模式
  • 细说DMD芯片信号-DLP3
  • MySQL从0到1全教程【1】MySQL数据库的基本概念以及MySQL8.0版本的部署
  • grep常用命令
  • Spring Data JPA 使用总结
  • 融云 CEO 董晗荣获 51CTO 「2023 年度科技影响力人物奖」
  • 数据洞察力,驱动企业财务变革
  • Postgresql常见(花式)操作完全示例
  • 【Docker】数据管理
  • 认识异常及异常处理机制之try-catch
  • html学习之路:简述html文档头部 <meta> 的 http-equiv 属性
  • 逆矩阵计算
  • 《豫鄂烽火燎原大小焕岭》:一部穿越时空的历史史诗
  • 浅研究下 DHCP 和 chrony
  • 【算法】动态中位数(对顶堆)
  • mysql服务多实例运行
  • 「HDLBits题解」Module fadd
  • 微软等开源评估ChatGPT、Phi、Llma等,统一测试平台
  • DDNS-GO配置使用教程
  • flex弹性盒子常用的布局属性详解