当前位置: 首页 > news >正文

扩散模型(二)——DDIM学习笔记-大白话推导

扩散模型系列:
(1)扩散模型(一)——DDPM推导笔记-大白话推导
(2)扩散模型(二)——DDIM学习笔记-大白话推导
请提前关注,后续待更新,谢谢…

写在前面:
(1)建议看这篇论文之前,可先看我写的前一篇论文:
扩散模型(一)——DDPM推导笔记-大白话推导

主要学习和参考了以下文章:
(1)一文带你看懂DDPM和DDIM
(2)关于 DDIM 采样算法的推导

0. DDIM的创新点

​ DDPM有一个很大的缺点就是其本身是一个马尔科夫链的过程,推理速度太慢,如果前向加噪过程是1000步,那么去噪过程就需要使用Unet生成噪声,然后去噪,这样进行1000步。这是一个及其缓慢的过程,DDIM原论文中举了一个生动的例子:

For example, it takes around 20 hours to sample 50k images of size 32 x 32 from a DDPM, but less than a minute to do so from a GAN on a Nvidia 2080 Ti GPU.

​ 基于DDPM,DDIM主要有两项改进:

​ (1)对于一个已经训练好的DDPM,只需要对采样公式做简单的修改,模型就能在去噪时「跳步骤」,在一步去噪迭代中直接预测若干次去噪后的结果。比如说,假设模型从时刻T=100开始去噪,新的模型可以在每步去噪迭代中预测10次去噪操作后的结果,也就是逐步预测时刻t=90,80,…,0的结果。这样,DDPM的采样速度就被加速了10倍。

​ (2)DDIM论文推广了DDPM的数学模型,打破了马尔科夫链的过程,从更高的视角定义了DDPM的反向过程(去噪过程)。在这个新数学模型下,我们可以自定义模型的噪声强度,让同一个训练好的DDPM有不同的采样效果。

1. 公式推导

​ DDPM的推导过程可以看《DDPM推导笔记》,这里假设 P ( x t − 1 ∣ x t , x 0 ) P(x_{t-1}|x_t, x_0) P(xt1xt,x0)满足如下正态分布,即:
P ( x t − 1 ∣ x t , x 0 ) ∼ N ( k x 0 + m x t , σ 2 ) 即 : x t − 1 = k x o + m x t + σ ϵ 其中有: ϵ ∼ N ( 0 , 1 ) (1) P(x_{t-1}|x_t, x_0) \sim N(kx_0+mx_t, \sigma^2) \\ 即:x_{t-1} = kx_o+mx_t + \sigma \epsilon \tag{1} \\ 其中有: \epsilon \sim N(0, 1) P(xt1xt,x0)N(kx0+mxt,σ2):xt1=kxo+mxt+σϵ其中有:ϵN(0,1)(1)
又因为前向的加噪过程满足:
x t = a t ˉ x 0 + 1 − a t ˉ ϵ 其中 ϵ ∼ N ( 0 , 1 ) (2) x_t = \sqrt{\bar{a_t}} x_0 + \sqrt{1 - \bar{a_t}} \epsilon \\ 其中\epsilon \sim N(0,1) \tag{2} xt=atˉ x0+1atˉ ϵ其中ϵN(0,1)(2)
合并(1)(2)上面两式,有:
x t − 1 = k x 0 + m [ a ˉ t x 0 + 1 − a ˉ t ϵ ] + σ ϵ (3) x_{t-1} = kx_0 + m[\sqrt{\bar{a}_t}x_0 + \sqrt{1-\bar{a}_t} \epsilon] + \sigma \epsilon \tag{3} xt1=kx0+m[aˉt x0+1aˉt ϵ]+σϵ(3)
再次合并有:
x t − 1 = ( k + m a ˉ t ) x 0 + ϵ ′ 其中: ϵ ’ ∼ M ( 0 , m 2 ( 1 − a ˉ t ) + σ 2 ) (4) x_{t-1} = (k+m\sqrt{\bar{a}_t}) x_0 + \epsilon' \\ 其中: \epsilon’ \sim M(0, m^2(1-\bar{a}_t) + \sigma^2) \tag{4} xt1=(k+maˉt )x0+ϵ其中:ϵM(0,m2(1aˉt)+σ2)(4)
从DDPM中可以可知:
x t − 1 = a ˉ t − 1 x 0 + 1 − a ˉ t − 1 ϵ (5) x_{t-1} = \sqrt{\bar{a}_{t-1}} x_0 + \sqrt{1-\bar{a}_{t-1}} \epsilon \tag{5} xt1=aˉt1 x0+1aˉt1 ϵ(5)
通过式(4)(5)的 x t − 1 x_{t-1} xt1服从的概率分布可知:
k + m a ˉ t = a ˉ t − 1 m 2 ( 1 − a ˉ t ) + σ 2 = 1 − a ˉ t − 1 (6) k + m\sqrt{\bar{a}_t} = \sqrt{\bar{a}_{t-1}} \\ m^2(1-\bar{a}_t) + \sigma^2 = 1-\bar{a}_{t-1} \tag{6} k+maˉt =aˉt1 m2(1aˉt)+σ2=1aˉt1(6)
由式(6)两个式子可解出:

将m,k带入到 P ( x t − 1 ∣ x t , x 0 ) P(x_{t-1}|x_t, x_0) P(xt1xt,x0)中,可得:

在这里插入图片描述

依旧可以使用 x t , x 0 x_t, x_0 xt,x0的关系式把 x 0 x_0 x0去掉:
x t = a t ˉ x 0 + 1 − a t ˉ ϵ 这里为了防止 ϵ 和后面的 ϵ 搞混,这里记为 ϵ t , 则上式变为: x t = a t ˉ x 0 + 1 − a t ˉ ϵ t (8) x_t = \sqrt{\bar{a_t}} x_0 + \sqrt{1 - \bar{a_t}} \epsilon \\ 这里为了防止\epsilon和后面的\epsilon搞混,这里记为\epsilon_{t},则上式变为:\\ x_t = \sqrt{\bar{a_t}} x_0 + \sqrt{1 - \bar{a_t}} \epsilon_t \tag{8} xt=atˉ x0+1atˉ ϵ这里为了防止ϵ和后面的ϵ搞混,这里记为ϵt,则上式变为:xt=atˉ x0+1atˉ ϵt(8)
P ( x t − 1 ∣ x t , x 0 ) P(x_{t-1}|x_t, x_0) P(xt1xt,x0)的概率分布采样可得到:
在这里插入图片描述

其中, ϵ \epsilon ϵ是从标准正太分布中,随机采样得到; ϵ t \epsilon_t ϵt是和DDPM一样,使用神经网络训练而来的; x t x_t xt是输入; a ˉ t − 1 和 a ˉ t \bar{a}_{t-1}和\bar{a}_t aˉt1aˉt是事先定义好的。至此,我们就只需要讨论 σ \sigma σ这个参数了。

2. σ \sigma σ的讨论

​ 怎样选取 σ \sigma σ才能获得最佳的加速效果呢?

​ 作者做了一些实验,作者原文中使用 σ τ i ( η ) \sigma_{\tau_i}{(\eta)} στi(η)来表示的 σ \sigma σ,其式子如下:
在这里插入图片描述

使用 η \eta η控制其大小。事实上,当 η = 1 \eta = 1 η=1时就变成了DDPM的去噪过程了,
在这里插入图片描述

η = 0 \eta=0 η=0时,效果是最好的。所以DDIM令 σ = 0 \sigma=0 σ=0

3. x p r e v x_{prev} xprev的推导

​ 从式9且 σ = 0 \sigma=0 σ=0,则式9中的所有都已知了!!!

​ 但是,即使这样,我们也还是由 x t 推导出 x t − 1 x_t推导出x_{t-1} xt推导出xt1呀,这样还是不能加快推理!

​ 不忙,我们回过头去思考,发现上面的推导过程中全程没有使用:
x t = a t x t − 1 + 1 − a t ϵ x_t= \sqrt{a_t}x_{t-1} + \sqrt{1-a_t} \epsilon xt=at xt1+1at ϵ
​ 也就可以不需要严格的由 x t 算到 x t − 1 x_t算到x_{t-1} xt算到xt1,则可以令 x p r e v 替代 x t − 1 x_{prev}替代x_{t-1} xprev替代xt1,式(9)则可以变换为:

在这里插入图片描述

​ 至此,所有的参数要是实现定义好了,要么是需要训练的,这样 x t 和 x p r e v x_t和x_{prev} xtxprev则可以相隔多个迭代步数。

4.疑难解答

Q1: 为什么式(11)可以简单的将 x p r e v 替代 x t − 1 x_{prev}替代x_{t-1} xprev替代xt1,毕竟虽然反向过程没有使用到 x t − 1 算到 x t x_{t-1}算到x_{t} xt1算到xt的关系式,但前向过程是使用到的呀?

​ 目前我也没有答案!还在理解中,由大佬路过,请留言讨论!

​ Q2: 为什么在DDIM可以令方差 σ = 0 \sigma=0 σ=0 ?

​ 目前我也没有答案!还在理解中,由大佬路过,请留言讨论!

http://www.lryc.cn/news/278535.html

相关文章:

  • 【软件测试作业_TPshop商城】农业工程学院-测试需求分析与测试计划+自动化+性能+测试用例+报告软件缺陷+测试计划+单元测试+系统测试
  • 屏幕截图编辑工具Snagit中文
  • 12GoF之代理模式
  • Unity中URP下实现能量罩(扭曲流光花纹)
  • 南京银行高管上新:“70后董事长”谢宁将上任,能否及时救场?
  • K8S容器编排基本使用
  • PyTorch 各种池化层函数全览与用法演示
  • Redis:原理速成+项目实战——Redis实战7(优惠券秒杀+细节解决超卖、一人一单问题)
  • 【刷题笔记3】
  • YOLOv8优化策略:轻量化改进 | 华为Ghostnet,超越谷歌MobileNet | CVPR2020
  • 格雷希尔G65系列快速接头满足汽车减震器的气压、油压测试要求
  • php中常用的几个安全函数
  • 【K8S 云原生】Kurbernets集群的调度策略
  • vue-office 支持多种文件(docx、excel、pdf)预览的vue组件库
  • 如何使用GaussDB创建脱敏策略(MASKING POLICY)
  • 【Golang map并发报错】panic: assignment to entry in nil map
  • 【GO语言依赖】Go语言依赖管理简述
  • 论文阅读记录SuMa SuMa++
  • 性能分析与调优: Linux 内存观测工具
  • 【ARM 嵌入式 编译系列 3.4 -- 查看所依赖库文件的路径 详细介绍】
  • 分布式锁3: zk实现分布式锁3 使用临时顺序节点+watch监听实现阻塞锁
  • google drive api
  • 3_代理模式(动态代理JDK原生和CGLib)
  • Linux的权限(1)
  • 数据安全保障的具体措施有哪些
  • 浅谈标签及应用场景
  • Linux动态分配IP与正向解析DNS
  • pyspark 使用udf 进行预测,发现只起了一个计算节点
  • mysql触发器的简单使用
  • 全志T113开发板Qt远程调试