当前位置: 首页 > news >正文

Unity中URP下深度图的线性转化

文章目录

  • 前言
  • 一、_ZBufferParams参数有两组值
  • 二、LinearEyeDepth
    • 1、使用
    • 2、Unity源码推导:
    • 3、使用矩阵推导:
  • 三、Linear01Depth
    • 1、使用
    • 2、Unity源码推导
    • 3、数学推导:


前言

在之前的文章中,我们实现了对深度图的使用。因为,深度图不是线性的。所以,在使用时,我们使用了 Linear01Depth 函数对其进行了线性转化。

  • Unity中URP下开启和使用深度图

但是,对深度图进行线性转化 还有其他函数。

在这篇文章中,我们来看一下深度图线性转化的 Linear01Depth函数 和 LinearEyeDepth 函数 干了什么。


一、_ZBufferParams参数有两组值

  • 在OpenGL下
    在这里插入图片描述

  • 在类DirectX下
    在这里插入图片描述


二、LinearEyeDepth

1、使用

  • 对采样的深度图纹理进行线性转化
    在这里插入图片描述

  • 转化后的值,就是原来物体的深度 Z 值

float4 cameraDepthTex = SAMPLE_TEXTURE2D(_CameraDepthTexture,sampler_CameraDepthTexture,uv);
float depthTex = LinearEyeDepth(cameraDepthTex,_ZBufferParams);

  • 返回结果全白,效果不明显
    请添加图片描述
  • 我们对其取小数部分,使其效果明显一点

frac(depthTex)

请添加图片描述

2、Unity源码推导:

在这里插入图片描述
在这里插入图片描述

  • 这里使用OpenGL下推导

Z v i e w = 1 1 − f n f d + f n f Z_{view}=\frac{1}{\frac{1-\frac{f}{n}}{f}d+\frac{\frac{f}{n}}{f}} Zview=f1nfd+fnf1

Z v i e w = 1 ( n n − f n ) 1 f d + 1 n Z_{view}=\frac{1}{(\frac{n}{n}-\frac{f}{n})\frac{1}{f}d+\frac{1}{n}} Zview=(nnnf)f1d+n11

Z v i e w = 1 ( n − f n ) 1 f d + 1 n Z_{view}=\frac{1}{(\frac{n-f}{n})\frac{1}{f}d+\frac{1}{n}} Zview=(nnf)f1d+n11

Z v i e w = 1 n − f n f d + 1 n Z_{view}=\frac{1}{\frac{n-f}{nf}d+\frac{1}{n}} Zview=nfnfd+n11

3、使用矩阵推导:

  • OpenGL
    [ 2 n w 0 0 0 0 2 n h 0 0 0 0 n + f n − f 2 n f n − f 0 0 − 1 0 ] \begin{bmatrix} \frac{2n}{w} & 0 & 0 & 0 \\ 0 & \frac{2n}{h} & 0 &0\\ 0 & 0 & \frac{n+f}{n-f} &\frac{2nf}{n-f}\\ 0 & 0 & -1 & 0\\ \end{bmatrix} w2n0000h2n0000nfn+f100nf2nf0

  • DirectX
    [ 2 n w 0 0 0 0 2 n h 0 0 0 0 n f − n n f f − n 0 0 − 1 0 ] \begin{bmatrix} \frac{2n}{w} & 0 & 0 & 0 \\ 0 & \frac{2n}{h} & 0 &0\\ 0 & 0 & \frac{n}{f-n} &\frac{nf}{f-n}\\ 0 & 0 & -1 & 0\\ \end{bmatrix} w2n0000h2n0000fnn100fnnf0

  • 由观察空间转化到裁剪空间矩阵可得
    Z c l i p = n + f n − f Z v i e w + 2 n f n − f W v i e w Z_{clip}=\frac{n+f}{n-f}Z_{view}+\frac{2nf}{n-f}W_{view} Zclip=nfn+fZview+nf2nfWview
    W c l i p = − Z v i e w W_{clip}=-Z_{view} Wclip=Zview

  • 做透视除法可得
    Z n d c = Z c l i p W c l i p = n + f n − f Z v i e w + 2 n f n − f − Z v i e w = n + f f − n + 2 n f ( f − n ) Z v i e w Z_{ndc} = \frac{Z_{clip}}{W_{clip}} = \frac{\frac{n+f}{n-f}Z_{view}+\frac{2nf}{n-f}}{-Z_{view}}=\frac{n+f}{f-n}+\frac{2nf}{(f-n)Z_{view}} Zndc=WclipZclip=Zviewnfn+fZview+nf2nf=fnn+f+(fn)Zview2nf

  • d = 0.5 ⋅ Z n d c + 0.5 d=0.5·Z_{ndc}+0.5 d=0.5Zndc+0.5
    d = 0.5 ⋅ ( n + f f − n + 2 n f ( f − n ) Z v i e w ) + 0.5 d = 0.5·(\frac{n+f}{f-n}+\frac{2nf}{(f-n)Z_{view}})+0.5 d=0.5(fnn+f+(fn)Zview2nf)+0.5

  • 我们由 d d d 公式化简,即可得到 Z v i e w Z_{view} Zview
    Z v i e w = 1 f − n n f d − 1 n Z_{view} = \frac{1}{\frac{f-n}{nf}d-\frac{1}{n}} Zview=nffndn11

  • 为了得到正的Z值,需要取反
    Z v i e w = − 1 f − n n f d − 1 n Z_{view} =- \frac{1}{\frac{f-n}{nf}d-\frac{1}{n}} Zview=nffndn11
    Z v i e w = 1 n − f n f d + 1 n Z_{view}=\frac{1}{\frac{n-f}{nf}d+\frac{1}{n}} Zview=nfnfd+n11


三、Linear01Depth

1、使用

  • 对采样的深度图纹理进行线性转化
    在这里插入图片描述

  • 转化后的值,是Z值在[0,1]区间的值

float4 cameraDepthTex = SAMPLE_TEXTURE2D(_CameraDepthTexture,sampler_CameraDepthTexture,uv);
float depthTex = Linear01Depth(cameraDepthTex,_ZBufferParams);

  • 返回结果
    请添加图片描述

2、Unity源码推导

在这里插入图片描述
、

  • OpenGL下推导:
    Z v i e w = 1 ( 1 − f n ) d + f n Z_{view}= \frac{1}{(1-\frac{f}{n})d+\frac{f}{n}} Zview=(1nf)d+nf1

3、数学推导:

  • 这是LinearEyeDepth下推导出来的
    Z v i e w = 1 n − f n f d + 1 n Z_{view}=\frac{1}{\frac{n-f}{nf}d+\frac{1}{n}} Zview=nfnfd+n11

  • Z v i e w Z_{view} Zview的取值范围 [ n e a r , f a r ] [near,far] [near,far]

  • 使其除以一个 f f f得到 Linear01Depth函数的结果
    Z v i e w = 1 n − f n f d + 1 n ⋅ 1 f = 1 n − f n f d f + f n = 1 ( 1 − f n ) d + f n Z_{view}=\frac{1}{\frac{n-f}{nf}d+\frac{1}{n}}·\frac{1}{f}=\frac{1}{\frac{n-f}{nf}df+\frac{f}{n}}=\frac{1}{(1-\frac{f}{n})d+\frac{f}{n}} Zview=nfnfd+n11f1=nfnfdf+nf1=(1nf)d+nf1

http://www.lryc.cn/news/277560.html

相关文章:

  • Low Poly Cartoon House Interiors
  • [算法与数据结构][c++]:左值、右值、左值引用、右值引用和std::move()
  • 【QT】day3
  • c++ fork, execl 参数 logcat | grep
  • QT:单例
  • IPv6路由协议---IPv6动态路由(OSPFv3-4)
  • 移动通信原理与关键技术学习(4)
  • 第二百五十八回
  • freesurfer-reconall后批量提取TIV(颅内总体积)
  • 【GO】如何用 Golang 的 os/exec 执行 pipe 替换文件
  • 基于Spring-boot-websocket的聊天应用开发总结
  • 2023年度总结 - 职业生涯第一个十年
  • setup 语法糖
  • Javaweb之Mybatis的基础操作的详细解析
  • 知名开发者社区Stack Overflow发布《2023 年开发者调查报告》
  • vue element plus Form 表单
  • zmq_connect和zmq_poll
  • TinyLog iOS v3.0接入文档
  • react-native 配置@符号绝对路径配置和绝对路径没有提示的问题
  • element的Table表格组件树形数据与懒加载简单使用
  • 游戏、设计选什么内存条?光威龙武系列DDR5量大管饱
  • linux磁盘清理_docker/overlay2爆满
  • Redis过期清理策略和内存淘汰机制
  • 2_并发编程同步锁(synchronized)
  • Python 常用模块pickle
  • CentOS 6 制作openssh 9.6 p1 rpm包(含ssh-copy-id、openssl) —— 筑梦之路
  • Tomcat Notes: Deployment File
  • 某邦通信股份有限公司IP网络对讲广播系统挖矿检测脚本
  • uniapp点击跳转传对象
  • 简单用PHP实现微信小程序的游戏功能