当前位置: 首页 > news >正文

Keras实现seq2seq

概述      

          Seq2Seq是一种深度学习模型,主要用于处理序列到序列的转换问题,如机器翻译、对话生成等。该模型主要由两个循环神经网络(RNN)组成,一个是编码器(Encoder),另一个是解码器(Decoder)。

seq2seq基本结构
seq2seq基本结构

        Seq2Seq被提出于2014年,最早由两篇文章独立地阐述了它主要思想,分别是Google Brain团队的《Sequence to Sequence Learning with Neural Networks》和Yoshua Bengio团队的《Learning Phrase Representation using RNN Encoder-Decoder for Statistical Machine Translation》。这两篇文章针对机器翻译的问题不谋而合地提出了相似的解决思路,Seq2Seq由此产生。

工作原理

  • 编码阶段:输入一个序列,使用RNN(Encoder)将每个输入元素转换为一个固定长度的向量,然后将这些向量连接起来形成一个上下文向量(context vector),用于表示输入序列的整体信息。
  • 转换阶段:将上下文向量传递给另一个RNN(Decoder),在每个时间步,根据当前的上下文向量和上一个输出生成一个新的输出,直到生成一个特殊的结束符号,表示序列的结束。
  • 训练阶段:根据目标序列和生成的输出之间的差异计算损失,并使用反向传播算法优化模型的参数,以减小损失。
  • 预测或生成阶段:使用训练好的模型根据输入序列生成目标序列。

示例 

# 导入所需的库
import numpy as np
from keras.models import Model
from keras.layers import Input, LSTM, Dense# 定义输入序列的长度和输出序列的长度
input_seq_length = 10
output_seq_length = 10# 定义输入序列的维度
input_dim = 28# 定义LSTM层的单元数
lstm_units = 128#定义编码器模型
#定义编码器的输入层,形状为(None, input_dim),表示可变长度的序列
encoder_inputs = Input(shape=(None, input_dim)) #定义一个LSTM层,单元数为lstm_units,返回状态信息
encoder = LSTM(lstm_units, return_state=True)#将编码器的输入传递给LSTM层,得到输出和状态信息
encoder_outputs, state_h, state_c = encoder(encoder_inputs) #将状态信息存储在列表中
encoder_states = [state_h, state_c]#定义解码器模型
#定义解码器的输入层,形状为(None, input_dim),表示可变长度的序列
decoder_inputs = Input(shape=(None, input_dim))  #定义一个LSTM层,单元数为lstm_units,返回序列信息和状态信息
decoder_lstm = LSTM(lstm_units, return_sequences=True, return_state=True)#将解码器的输入和编码器的状态传递给LSTM层,得到输出和状态信息
decoder_outputs, _, _ = decoder_lstm(decoder_inputs, initial_state=encoder_states)#定义一个全连接层,输出维度为input_dim,激活函数为softmax
decoder_dense = Dense(input_dim, activation='softmax')  #将LSTM层的输出传递给全连接层,得到最终的输出
decoder_outputs = decoder_dense(decoder_outputs)# 定义seq2seq模型,输入为编码器和解码器的输入,输出为解码器的输出
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)# 编译模型,使用RMSProp优化器和分类交叉熵损失函数进行编译
model.compile(optimizer='rmsprop', loss='categorical_crossentropy')# 打印模型结构
model.summary()

模型结构 

Model: "model"
__________________________________________________________________________________________________Layer (type)                Output Shape                 Param #   Connected to                  
==================================================================================================input_1 (InputLayer)        [(None, None, 28)]           0         []                            input_2 (InputLayer)        [(None, None, 28)]           0         []                            lstm (LSTM)                 [(None, 128),                80384     ['input_1[0][0]']             (None, 128),                                                        (None, 128)]                                                        lstm_1 (LSTM)               [(None, None, 128),          80384     ['input_2[0][0]',             (None, 128),                           'lstm[0][1]',                (None, 128)]                           'lstm[0][2]']                dense (Dense)               (None, None, 28)             3612      ['lstm_1[0][0]']              ==================================================================================================
Total params: 164380 (642.11 KB)
Trainable params: 164380 (642.11 KB)
Non-trainable params: 0 (0.00 Byte)

         

      在以上示例代码中首先导入了所需的库和模块,包括Keras中的Model、Input、LSTM和Dense。然后定义了输入维度,包括词汇表大小和序列最大长度。接下来分别定义了编码器和解码器模型。编码器模型使用LSTM层作为主要结构,输出维度为128;解码器模型同样使用LSTM层作为主要结构,输出维度为词汇表大小,并使用softmax激活函数。最后,通过将编码器和解码器模型组合起来构建了Seq2Seq模型。在构建完Seq2Seq模型后,使用compile方法对模型进行编译,设置了损失函数为分类交叉熵,优化器为Adam,评估指标为准确率。最后一行代码是训练示例,实际使用时需要根据具体的训练数据和训练过程进行设置。

http://www.lryc.cn/news/276525.html

相关文章:

  • 1080p 1k 2k 4k 8k 分辨率,2K就不应该存在。
  • 接口芯片选型分析 四通道差分驱动可满足ANSI TIA/EIA-422-B 和ITU V.11 的要求 低功耗,高速率,高ESD
  • 使用.Net nanoFramework获取ESP32板载按键的点击事件
  • 安全远控如何设置?揭秘ToDesk、TeamViewer 、向日葵安全远程防御大招
  • Spring AOP(详解)
  • Linux系统编程之进程
  • Vue中使用require.context自动引入组件的方法介绍
  • Java 监控诊断利器 Arthas monitor/watch/trace 命令使用详解
  • 论文阅读:基于MCMC的能量模型最大似然学习剖析
  • 【Verilog】期末复习——设计一个带异步复位端且高电平有效的32分频电路
  • 基于springboot的java读取文档内容(超简单)
  • K8S亲和性,反亲和性,及污点
  • 2024年,AI、Web3、区块链、元宇宙:有没有“相互成就“的可能性?
  • Mac电脑好用的修图软件:Affinity Photo 2中文 for Mac
  • 数据结构之Radix和Trie
  • ctrl+c与kill -2的区别
  • 每日算法打卡:分巧克力 day 9
  • Golang switch 语句
  • 可碧教你C++——位图
  • 2024年虚拟DOM技术将何去何从?
  • 基于51单片机的恒温淋浴器控制电路设计
  • 【redis】redis的bind配置
  • C++ 继承
  • 了解ASP.NET Core 中的文件提供程序
  • 竞赛保研 基于深度学习的人脸性别年龄识别 - 图像识别 opencv
  • JavaScript音视频,JavaScript简单获取电脑摄像头画面并播放
  • 《JVM由浅入深学习【五】 2024-01-08》JVM由简入深学习提升分享
  • FastDFS之快速入门、上手
  • Vue 中的 ref 与 reactive:让你的应用更具响应性(中)
  • 【数据库基础】Mysql与Redis的区别