当前位置: 首页 > news >正文

实战Flink Java api消费kafka实时数据落盘HDFS

文章目录

  • 1 需求分析
  • 2 实验过程
    • 2.1 启动服务程序
    • 2.2 启动kafka生产
  • 3 Java API 开发
    • 3.1 依赖
    • 3.2 代码部分
  • 4 实验验证
    • STEP1
    • STEP2
    • STEP3
  • 5 时间窗口

1 需求分析

在Java api中,使用flink本地模式,消费kafka主题,并直接将数据存入hdfs中。

flink版本1.13

kafka版本0.8

hadoop版本3.1.4

2 实验过程

2.1 启动服务程序

为了完成 Flink 从 Kafka 消费数据并实时写入 HDFS 的需求,通常需要启动以下组件:

[root@hadoop10 ~]# jps
3073 SecondaryNameNode
2851 DataNode
2708 NameNode
12854 Jps
1975 StandaloneSessionClusterEntrypoint
2391 QuorumPeerMain
2265 TaskManagerRunner
9882 ConsoleProducer
9035 Kafka
3517 NodeManager
3375 ResourceManager

确保 Zookeeper 在运行,因为 Flink 的 Kafka Consumer 需要依赖 Zookeeper。

确保 Kafka Server 在运行,因为 Flink 的 Kafka Consumer 需要连接到 Kafka Broker。

启动 Flink 的 JobManager 和 TaskManager,这是执行 Flink 任务的核心组件。

确保这些组件都在运行,以便 Flink 作业能够正常消费 Kafka 中的数据并将其写入 HDFS。

  • 具体的启动命令在此不再赘述。

2.2 启动kafka生产

  • 当前kafka没有在守护进程后台运行;
  • 创建主题,启动该主题的生产者,在kafka的bin目录下执行;
  • 此时可以生产数据,从该窗口键入任意数据进行发送。
kafka-topics.sh --zookeeper hadoop10:2181 --create --topic topic1 --partitions 1 --replication-factor 1kafka-console-producer.sh --broker-list hadoop10:9092 --topic topic1

在这里插入图片描述

3 Java API 开发

3.1 依赖

此为项目的所有依赖,包括flink、spark、hbase、ck等,实际本需求无需全部依赖,均可在阿里云或者maven开源镜像站下载。

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0.0</modelVersion><groupId>org.example</groupId><artifactId>flink-test</artifactId><version>1.0-SNAPSHOT</version><properties><flink.version>1.13.6</flink.version><hbase.version>2.4.0</hbase.version></properties><dependencies><dependency><groupId>org.apache.flink</groupId><artifactId>flink-streaming-java_2.11</artifactId><version>${flink.version}</version><!-- <scope>provided</scope>--></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-java</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-clients_2.11</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-api-java-bridge_2.11</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-planner-blink_2.11</artifactId><version>${flink.version}</version></dependency><!--<dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-planner_2.11</artifactId><version>1.14.6</version></dependency>--><dependency><groupId>org.apache.flink</groupId><artifactId>flink-shaded-hadoop-2-uber</artifactId><version>2.7.5-10.0</version></dependency><dependency><groupId>log4j</groupId><artifactId>log4j</artifactId><version>1.2.17</version></dependency><dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId><version>1.18.24</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-kafka_2.11</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-jdbc_2.11</artifactId><version>${flink.version}</version></dependency><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>5.1.38</version></dependency><dependency><groupId>org.apache.bahir</groupId><artifactId>flink-connector-redis_2.11</artifactId><version>1.1.0</version></dependency><dependency><groupId>org.apache.hbase</groupId><artifactId>hbase-server</artifactId><version>${hbase.version}</version><exclusions><exclusion><artifactId>guava</artifactId><groupId>com.google.guava</groupId></exclusion><exclusion><artifactId>log4j</artifactId><groupId>log4j</groupId></exclusion></exclusions></dependency><dependency><groupId>org.apache.hbase</groupId><artifactId>hbase-common</artifactId><version>${hbase.version}</version><exclusions><exclusion><artifactId>guava</artifactId><groupId>com.google.guava</groupId></exclusion></exclusions></dependency><dependency><groupId>org.apache.commons</groupId><artifactId>commons-pool2</artifactId><version>2.4.2</version></dependency><dependency><groupId>com.alibaba</groupId><artifactId>fastjson</artifactId><version>2.0.32</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-kafka_2.11</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-csv</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-jdbc_2.11</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-json</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-hbase-2.2_2.11</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-cep_2.11</artifactId><version>${flink.version}</version></dependency><dependency><groupId>cn.hutool</groupId><artifactId>hutool-all</artifactId><version>5.8.20</version></dependency></dependencies><build><extensions><extension><groupId>org.apache.maven.wagon</groupId><artifactId>wagon-ssh</artifactId><version>2.8</version></extension></extensions><plugins><plugin><groupId>org.codehaus.mojo</groupId><artifactId>wagon-maven-plugin</artifactId><version>1.0</version><configuration><!--上传的本地jar的位置--><fromFile>target/${project.build.finalName}.jar</fromFile><!--远程拷贝的地址--><url>scp://root:root@hadoop10:/opt/app</url></configuration></plugin></plugins></build></project>
  • 依赖参考
    在这里插入图片描述

3.2 代码部分

  • 请注意kafka和hdfs的部分需要配置服务器地址,域名映射。
  • 此代码的功能是消费topic1主题,将数据直接写入hdfs中。
import org.apache.flink.api.common.serialization.SimpleStringEncoder;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.core.fs.Path;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.sink.filesystem.StreamingFileSink;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;import java.util.Properties;public class Test9_kafka {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();Properties properties = new Properties();properties.setProperty("bootstrap.servers", "hadoop10:9092");properties.setProperty("group.id", "test");// 使用FlinkKafkaConsumer作为数据源DataStream<String> ds1 = env.addSource(new FlinkKafkaConsumer<>("topic1", new SimpleStringSchema(), properties));String outputPath = "hdfs://hadoop10:8020/out240102";// 使用StreamingFileSink将数据写入HDFSStreamingFileSink<String> sink = StreamingFileSink.forRowFormat(new Path(outputPath), new SimpleStringEncoder<String>("UTF-8")).build();// 添加Sink,将Kafka数据直接写入HDFSds1.addSink(sink);ds1.print();env.execute("Flink Kafka HDFS");}
}

4 实验验证

STEP1

运行idea代码,程序开始执行,控制台除了日志外为空。下图是已经接收到生产者的数据后,消费在控制台的截图。

在这里插入图片描述

STEP2

启动生产者,将数据写入,数据无格式限制,随意填写。此时发送的数据,是可以在STEP1中的控制台中看到屏幕打印结果的。
在这里插入图片描述

STEP3

在HDFS中查看对应的目录,可以看到数据已经写入完成。
我这里生成了多个inprogress文件,是因为我测试了多次,断码运行了多次。ide打印在屏幕后,到hdfs落盘写入,中间有一定时间,需要等待,在HDFS中刷新数据,可以看到文件大小从0到被写入数据的过程。
在这里插入图片描述

5 时间窗口

  • 使用另一种思路实现,以时间窗口的形式,将数据实时写入HDFS,实验方法同上。截图为发送数据消费,并且在HDFS中查看到数据。
    在这里插入图片描述

在这里插入图片描述

package day2;import day2.CustomProcessFunction;
import org.apache.flink.api.common.serialization.SimpleStringEncoder;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.core.fs.Path;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.sink.filesystem.StreamingFileSink;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;import java.util.Properties;public class Test9_kafka {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();Properties properties = new Properties();properties.setProperty("bootstrap.servers", "hadoop10:9092");properties.setProperty("group.id", "test");// 使用FlinkKafkaConsumer作为数据源DataStream<String> ds1 = env.addSource(new FlinkKafkaConsumer<>("topic1", new SimpleStringSchema(), properties));String outputPath = "hdfs://hadoop10:8020/out240102";// 使用StreamingFileSink将数据写入HDFSStreamingFileSink<String> sink = StreamingFileSink.forRowFormat(new Path(outputPath), new SimpleStringEncoder<String>("UTF-8")).build();// 在一个时间窗口内将数据写入HDFSds1.process(new CustomProcessFunction())  // 使用自定义 ProcessFunction.addSink(sink);// 执行程序env.execute("Flink Kafka HDFS");}
}
package day2;import org.apache.flink.streaming.api.functions.ProcessFunction;
import org.apache.flink.util.Collector;public class CustomProcessFunction extends ProcessFunction<String, String> {@Overridepublic void processElement(String value, Context ctx, Collector<String> out) throws Exception {// 在这里可以添加具体的逻辑,例如将数据写入HDFSSystem.out.println(value);  // 打印结果到屏幕out.collect(value);}
}
http://www.lryc.cn/news/275531.html

相关文章:

  • 爬虫与反爬-localStorage指纹(某易某盾滑块指纹检测)(Hook案例)
  • 聊一聊 webpack 和 vite 的开发服务代理的问题
  • 【鸿蒙4.0】安装DevEcoStudio
  • [概率论]四小时不挂猴博士
  • 算法通关村第二十关-黄金挑战图的常见算法
  • 服务器内存不足怎么办?会有什么影响?
  • GPT实战系列-简单聊聊LangChain
  • 【读书笔记】《白帽子讲web安全》浏览器安全
  • 海外服务器2核2G/4G/8G和4核8G配置16M公网带宽优惠价格表
  • Linux 编译安装 Nginx
  • Oracle文件自动“减肥”记
  • 【csharp】抽象类与接口有哪些不同?什么时候应该使用抽象类?
  • 最新-mybatis-plus 3.5分页插件配置
  • 案例098:基于微信小程序的电子购物系统的设计与实现
  • 亚信安慧AntDB数据库:数字化时代的数据库创新引领者
  • 【MySQL】关于日期转换的方法
  • Ubuntu 虚拟机挂接 Windows 目录
  • 机器学习模型可解释性的结果分析
  • 静态网页设计——环保网(HTML+CSS+JavaScript)(dw、sublime Text、webstorm、HBuilder X)
  • 【HarmonyOS】装饰器下的状态管理与页面路由跳转实现
  • 学习笔记——C++中数据的输入 cin
  • Filter Options in Select Field
  • 【React系列】Hook(二)高级使用
  • 编程笔记 html5cssjs 018 HTML颜色
  • C++_继承
  • Java-IO流-15
  • java中使用redis
  • Mongodb的可重试读操作
  • 2024年1月2日-1月7日(ue5底层渲染+ue arpg+项目需求)
  • MySQL中的视图和触发器