当前位置: 首页 > news >正文

图像分割-Grabcut法(C#)

版权声明:本文为博主原创文章,转载请在显著位置标明本文出处以及作者网名,未经作者允许不得用于商业目的。

本文的VB版本请访问:图像分割-Grabcut法-CSDN博客

GrabCut是一种基于图像分割的技术,它可以用于将图像中的前景和背景分离。在实现中,GrabCut算法通常需要使用高斯混合模型(GMM)来建立前景和背景的概率分布,以便更好的估计像素的标签。同时,还需要考虑如何处理边界处的像素,以避免边界处的像素被错误地分类。GrabCut算法在图像分割中有着广泛的应用,例如人像分割、物体抠图等。

EmguCV使用CvInvoke.GrabCut方法来执行GrabCut算法,该方法声明如下:

public static void GrabCut(

           IInputArray img,

                    IInputOutputArray mask,

                    Rectangle rect,

                    IInputOutputArray bgdModel,

                    IInputOutputArray fgdModel,

                    int iterCount,

                   GrabcutInitType type

)

参数说明:

  1. img:输入输出的图像,必须是三通道彩色图像。
  2. mask:指定的掩码图像,必须是单通道灰度图像,并且与输入图像具有相同的尺寸。可以传入0-3的值,分别为:0表示明显为背景的像素、1表示冥相位前景的像素、2表示可能为背景的像素、3表示可能为前景的像素。
  3. rect:指定的矩形框,用于定位大概率可能为前景目标的位置。
  4. bgdModel:背景模型,必须是单通道浮点型Mat。
  5. fgdModel:前景模型,必须是单通道浮点型Mat。
  6. iterCount:迭代次数,用于控制算法的收敛性。
  7. type:GrabCut算法初始化类型,可以选择GrabCutInitType.WithRect或GrabCutInitType.WithMask,分别表示根据提供的矩形初始化或根据掩码初始化。

该方法没有返回值,而是直接在mask图像上进行前景分割操作,最终获得的mask包含0-3的值,含义如参数中说明。

        //Grabcut法 private void Button5_Click(object sender, EventArgs e){Mat m = new Mat("C:\\learnEmgucv\\tower.jpg", ImreadModes.AnyColor);Mat result = new Mat();Mat bg = new Mat();Mat fg = new Mat();Rectangle rect = new Rectangle(80, 30, 680, 450);CvInvoke.GrabCut(m, result, rect, bg, fg, 1, GrabcutInitType.InitWithRect);//输出的result只有4个值://0:确定背景//1:确定前景//2:可能背景//3:可能前景//演示框选范围CvInvoke.Rectangle(m, rect, new MCvScalar(255, 255, 255), 1);ImageBox1.Image = m;//标记区域Matrix<byte> matr = new Matrix<byte>(result.Rows, result.Cols);result.CopyTo(matr);for (int i = 0; i < matr.Cols; i++){for (int j = 0; j < matr.Rows; j++){//将确定背景和可能背景标记为0,否则为255if (matr[j, i] == 0 || matr[j, i] == 2)matr[j, i] = 0;elsematr[j, i] = 255;}}Mat midm = new Mat();midm = matr.Mat;//显示标记的图像CvInvoke.Imshow("midm", midm);//灰度转为彩色Mat midm1 = new Mat();CvInvoke.CvtColor(midm, midm1, ColorConversion.Gray2Bgr);Mat mout = new Mat();//And运算CvInvoke.BitwiseAnd(m, midm1, mout);CvInvoke.Imshow("mout", mout);}

输出结果如下图所示:

图8-5 Grabcut法分离前景

       //Grabcut法 private void Button6_Click(object sender, EventArgs e){Mat m = CvInvoke.Imread("C:\\learnEmgucv\\tower.jpg", ImreadModes.Color);Mat result = new Mat();Mat bg = new Mat();Mat fg = new Mat();Rectangle rect = new Rectangle(80, 30, 680, 450);CvInvoke.GrabCut(m, result, rect, bg, fg, 5, GrabcutInitType.InitWithRect);Image<Bgr, byte> src = m.ToImage<Bgr, byte>();Image<Bgr, byte> dst = new Image<Bgr, byte>(new Size(src.Width, src.Height));Image<Gray, byte> mask = result.ToImage<Gray, byte>();//直接操作Image像素点for (int i = 0; i < src.Rows; i++){for (int j = 0; j < src.Cols; j++){//如果是确定前景和可能前景,直接保留原像素点颜色,否则为黑色if (mask.Data[i, j, 0] == 1 || mask.Data[i, j, 0] == 3){dst.Data[i, j, 0] = src.Data[i, j, 0];dst.Data[i, j, 1] = src.Data[i, j, 1];dst.Data[i, j, 2] = src.Data[i, j, 2];}else{dst.Data[i, j, 0] = 0;dst.Data[i, j, 1] = 0;dst.Data[i, j, 2] = 0;}}}ImageBox1.Image = dst;}

输出结果如下图所示:

图8-6 Grabcut法分离前景

      //标记为确定前景,这里使用InitWithMask 参数private void Button7_Click(object sender, EventArgs e){Mat m = new Mat("c:\\learnEmgucv\\lena.jpg", ImreadModes.AnyColor);Mat mask = new Mat();Mat bg = new Mat();Mat fg = new Mat();Rectangle rect = new Rectangle(80, 30, 340, 480);//使用前景为全白色Mat m1 = new Mat("c:\\learnEmgucv\\lena_fillwhite.jpg", ImreadModes.Grayscale);Mat mask1 = new Mat();//二值化CvInvoke.Threshold(m1, mask1, 250, 1, ThresholdType.Binary);CvInvoke.Rectangle(m, rect, new MCvScalar(255, 255, 255), 1);//标记之后再调用GrabCut,使用InitWithMask参数CvInvoke.GrabCut(m, mask1, rect, bg, fg, 2, GrabcutInitType.InitWithMask);Matrix<byte> matrx = new Matrix<byte>(mask1.Rows, mask1.Cols);mask1.CopyTo(matrx);for (int i = 0; i < matrx.Cols; i++)for (int j = 0; j < matrx.Rows; j++)if (matrx[i, j] == 0 || matrx[i, j] == 2)matrx[i, j] = 0;elsematrx[i, j] = 255;Mat midm2 = new Mat();midm2 = matrx.Mat;Mat midm1 = new Mat();CvInvoke.CvtColor(midm2, midm1, ColorConversion.Gray2Bgr);Mat mout = new Mat();CvInvoke.BitwiseAnd(m, midm1, mout);CvInvoke.Imshow("mout", mout);}

输出结果如下图所示:

图8-7 Grabcut法分离前景

由于.net平台下C#和vb.NET很相似,本文也可以为C#爱好者提供参考。

学习更多vb.net知识,请参看vb.net 教程 目录

http://www.lryc.cn/news/273815.html

相关文章:

  • C# WPF上位机开发(Web API联调)
  • c语言:用结构体求平均分|练习题
  • echarts 仪表盘进度条 相关配置
  • Simpy:Python之离散时间序列仿真
  • 连接GaussDB(DWS)报错:Invalid or unsupported by client SCRAM mechanisms
  • 汽车标定技术(十四)--标定数据固化方法简介
  • 2024年关键技术发展战略趋势前瞻
  • Java程序设计——GUI设计
  • three.js Raycaster(鼠标点击选中模型)
  • Springboot整合RocketMQ 基本消息处理
  • 红外传感器深入解析
  • 18、Kubernetes核心技术 - InitContainer(初始化容器)
  • electron进程通信之预加载脚本和渲染进程对主进程通信
  • 如何有效使用 .gitignore 文件
  • 大数据毕设分享 flink大数据淘宝用户行为数据实时分析与可视化
  • 大语言模型训练数据集
  • python的课后练习总结4(while循环)
  • Flink Connector 开发
  • Golang leetcode707 设计链表 (链表大成)
  • Django和Vue项目运行过程中遇到的问题及解决办法
  • Single-Image Crowd Counting via Multi-Column Convolutional Neural Network
  • el-cascader隐藏某一级的勾选框及vue报错Error in callback for watcher “options“的解决办法
  • 2024美赛数学建模思路A题B题C题D题E题F题思路汇总 选题分析
  • C++ 常用设计模式
  • 高性价比的高速吹风机/高速风筒解决方案,基于普冉单片机开发
  • toRefs的用法
  • MySQL基础篇(三)约束
  • Java进阶 1-2 枚举
  • 一个人最大的内驱力是什么?
  • 解决方法:公众号的API上传素材报错40005