当前位置: 首页 > news >正文

yolov5旋转目标检测-遥感图像检测-无人机旋转目标检测-附代码和原理

综述

为了解决旋转目标检测问题,研究者们提出了多种方法和算法。以下是一些常见的旋转目标检测方法:

  • 基于滑动窗口的方法:在图像上以不同的尺度和角度滑动窗口,通过分类器判断窗口中是否存在目标。这种方法简单直观,但计算量大且效果依赖于窗口的尺度和角度设置。
  • 基于特征提取的方法:利用图像特征提取技术,如SIFT、HOG、CNN等,获取目标的特征表示,再通过分类器进行目标检测。这种方法能够较好地处理目标的旋转变化,但对特征提取的准确性和鲁棒性有一定要求。
  • 基于区域提取的方法:利用图像的局部区域信息进行目标检测,如Selective
    Search、EdgeBoxes等。这种方法在目标的旋转变化下具有一定的鲁棒性,但对目标的形状和尺度变化敏感。
  • 基于深度学习的方法:利用深度学习技术,如卷积神经网络(CNN)、循环神经网络(RNN)等,学习图像中目标的特征表示,并通过回归或分类模型实现目标检测。这种方法在旋转目标检测上取得了显著的效果提升,但需要大量的标注数据和计算资源。

简介

  • YOLOv5:YOLOv5是一种基于深度学习的目标检测算法,它采用了轻量级网络结构,具有较快的检测速度和较高的准确率。

  • 在这里插入图片描述

  • 旋转目标检测:传统的目标检测算法主要针对水平或垂直方向的目标,而在遥感图像和无人机应用中,目标常常以各种角度出现。因此,针对旋转目标的检测成为一个重要的研究方向。

  • 遥感图像检测:遥感图像通常包含了大范围的地理信息,如建筑物、道路、农田等。利用YOLOv5进行遥感图像检测可以快速准确地识别出这些目标,从而帮助农业、城市规划等应用

  • 无人机旋转目标检测:无人机在航拍过程中,由于姿态变化和目标运动,导致拍摄到的目标可能以各种角度存在。利用YOLOv5进行无人机旋转目标检测可以有效地识别出目标,并进行跟踪或其他后续处理。

  • 数据集和训练:为了实现旋转目标检测,需要准备旋转目标的数据集,并对YOLOv5进行相应的调整和训练。数据集可以包含具有各种旋转角度的目标图像,并进行标注。

  • 模型调优:针对旋转目标检测任务,可能需要对YOLOv5模型进行一些调优,例如增加网络层数、调整损失函数等,以提升检测准确率和鲁棒性。
    在这里插入图片描述

代码安装

安装要求:

  • Linux(建议使用);Windows(不建议使用,请参考此问题,如果您在生成utils/nms_rotated_ext.cpython-XX-XX-XX-XX.so方面遇到困难)
  • Python 3.7+
  • PyTorch ≥ 1.7
  • CUDA 9.0或更高版本

我已经测试了以下操作系统和软件版本:

  • 操作系统:Ubuntu 16.04/18.04
  • CUDA:10.0/10.1/10.2/11.3

安装步骤:

a. 创建conda虚拟环境并激活,例如:

conda create -n Py39_Torch1.10_cu11.3 python=3.9 -y 
source activate Py39_Torch1.10_cu11.3

b. 确保您的CUDA运行时API版本≤CUDA驱动程序版本。 (例如11.3 ≤ 11.4)

nvcc -V
nvidia-smi

c. 按照官方说明安装PyTorch和torchvision,确保cudatoolkit版本与CUDA运行时API版本相同,例如:

pip3 install torch==1.10.1+cu113 torchvision==0.11.2+cu113 torchaudio==0.10.1+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html
nvcc -V
python

import torch
torch.version.cuda
exit()

pip install -r requirements.txt
cd utils/nms_rotated
python setup.py develop #或"pip install -v -e ."

运行demo

Usage:$ python path/to/detect.py --weights yolov5_rotate.pt --source 0  # webcamimg.jpg  # imagevid.mp4  # videopath/  # directorypath/*.jpg  # glob'https://youtu.be/Zgi9g1ksQHc'  # YouTube'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream

结果展示

在这里插入图片描述

结论

选择毕业设计课题需要考虑以下几个因素:

  • 兴趣和专业方向:选择自己感兴趣并且符合自己专业方向的课题,可以让你更加投入和热情地完成毕业设计,并提升自己相关领域的技能。
  • 实用性和社会需求:选择具有实用性和社会需求的课题,可以使你的毕业设计有更大的实际意义和应用前景。
  • 研究难度和可行性:选择既有一定的研究难度,但又具备可行性和实现可能性的课题,可以保证你能够完成毕业设计,并取得较好的成果。
代码获取、论文指导、作业帮助、毕设达标——qq1309399183
  • 资源和指导教师:选择具有充足资源和提供指导支持的课题,可以让你在毕业设计中得到更好的实践和研究经验,并且顺利完成毕业设计
http://www.lryc.cn/news/268883.html

相关文章:

  • Qt学习:Qt的意义安装Qt
  • Anylogic Pro 8.8.x for Mac / for Linux Crack
  • ROS无人机初始化GPS定位漂移误差,确保无人机稳定飞行
  • k8s网络类型
  • Seata 中封装了四种分布式事务模式,分别是: AT 模式, TCC 模式, Saga 模式, XA 模式,
  • 为什么设计制造行业需要数据加密?
  • 查看ios app运行日志
  • 怎么卸载macOS上的爱思助手如何卸载macOS上的logitech g hub,如何卸载顽固macOS应用
  • 侦探IP“去推理化”:《名侦探柯南》剧场版走过26年
  • 图论 经典例题
  • Oracle数据updater如何回滚
  • redis开启密码验证
  • 一种删除 KubeSphere 中一直卡在 Terminating 的 Namespace--KubeSphere Logging System的简单方法
  • Flink1.17实战教程(第七篇:Flink SQL)
  • nest定时任务调用service报错
  • [Angular] 笔记 11:可观察对象(Observable)
  • 【论文阅读】Resource Allocation for Text Semantic Communications
  • VMware16 pro 安装openEuler-23.09-x86_64,详细操作流程+详图。
  • Mybatis 动态 SQL - script,bind,多数据库支持
  • Scikit-Learn线性回归(一)
  • Mybatis 动态 SQL - choose, when, otherwise
  • idea Spring Boot项目使用JPA创建与数据库链接
  • redis基础知识
  • 最短路径(数据结构实训)(难度系数100)
  • 基于SSM实现的电动汽车充电网点管理系统
  • Android ImageView如何使用.svg格式图片
  • 力扣热题100道-子串篇
  • day3--Shell
  • 【数据结构】插入排序、选择排序、冒泡排序、希尔排序、堆排序
  • TiDB 7.5 LTS 发版丨提升规模化场景下关键应用的稳定性和成本的灵活性