当前位置: 首页 > news >正文

CNN实现对手写字体的迭代

导入库

import torchvision
import torch
from torchvision.transforms import ToTensor
from torch import nn
import matplotlib.pyplot as plt

导入手写字体数据

train_ds=torchvision.datasets.MNIST('data/',train=True,transform=ToTensor(),download=True)
test_ds=torchvision.datasets.MNIST('data/',train=False,transform=ToTensor(),download=True)
train_dl=torch.utils.data.DataLoader(train_ds,batch_size=64,shuffle=True)
test_dl=torch.utils.data.DataLoader(test_ds,batch_size=46)
imgs,labels=next(iter(train_dl))
print(imgs.shape)
print(labels.shape)

从上述代码中可以看到,train_dl返回的图片数据是四维的,4个维度分别代表批次、通道数、高度和宽度(batch,channel,height,width),这正是PyTorch下卷积模型所需要的图片输入格式

创建卷积模型并训练

下面创建卷积模型来识别MNIST手写数据集。我们所创建的卷积模型先试用两个卷积层和两个池化层,然后将最后一个池化的输出展平为二维数据形式连接到全连接层,最后是输出层,中间的每一层都是用ReLU函数激活,输出层的输出张量长度为10,与类别数一致。代码如下

class Model(nn.Module):def __init__(self):super().__init__()self.conv1=nn.Conv2d(1,6,5)   #初始化第一个卷积层self.conv2=nn.Conv2d(6,16,5)  #初始化第二个卷积层self.liner_1=nn.Linear(16*4*4,256)  #初始化全连接层16*4*4为输入的特征,256为输出的特征#就是将一个大小为16×4×4的输入特征映射到一个大小为256的输出特征空间中self.liner_2=nn.Linear(256,10)  #初始化输出层def forward(self,input):#调用第一个卷积层和池化层x=torch.max_pool2d(torch.relu(self.conv1(input)),2)#调用第二个卷积层和池化层x=torch.max_pool2d(torch.relu(self.conv2(x)),2)# view()方法将数据展平为二维形式# torch.Size([64,16,4,4])->torch.Size([64,16*4*4])x=x.view(-1,16*4*4)x=torch.relu(self.liner_1(x))  # 全连接层x=self.liner_2(x)  #输出层return x#判断当前可用的device,如果显卡可用,就设置为cuda,否则设置为cpu
device="cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))#初始化模型,并使用.to()方法将其上传到device
#如果GPU可以用,会上传到显存,如果device是CPU,依保留在内存
model=Model().to(device)  # 初始化模型并设置设备
print(model)loss_fn=nn.CrossEntropyLoss() # 初始化交叉熵损失函数optimizer=torch.optim.SGD(model.parameters(),lr=0.001) # 初始化优化器def train(dataloader,model,loss_fn,optimizer):size=len(dataloader.dataset)  # 获取当前数据集样本总数量num_batches=len(dataloader)  #获得当前dataloader总批次数# train_loss用于累计所有批次的损失之和,correct用于累计预测正确的样本总数train_loss,correct=0,0for X,y in dataloader:  #对dataloader进行迭代X,y=X.to(device),y.to(device)  #每一批次的数据设置为使用当前device进行预测,并计算一个批次的损失pred=model(X)loss=loss_fn(pred,y)  # 返回的是平均损失#使用反向传播算法,根据损失优化模型参数optimizer.zero_grad()  #将模型参数的梯度全部归零loss.backward()  # 损失反向传播,计算模型参数梯度optimizer.step()  # 根据梯度优化参数with torch.no_grad():# correct 用于累计预测正确的样本总数correct+=(pred.argmax(1)==y).type(torch.float).sum().item()#train_loss用于累计所有批次的损失之和train_loss+=loss.item()#train_loss是所有批次的损失之和,所以计算全部样本的平均损失时需要处于总批次数train_loss/=num_batches#correct是预测正确的样本总是,若计算整个epoch总体正确率,需除以样本总数量correct/=sizereturn train_loss,correctdef test(dataloader,model):size=len(dataloader.dataset)num_batches=len(dataloader)test_loss,correct=0,0with torch.no_grad():for X,y in dataloader:X,y=X.to(device),y.to(device)pred=model(X)test_loss+=loss_fn(pred,y).item()correct+=(pred.argmax(1)==y).type(torch.float).sum().item()test_loss/=num_batchescorrect/=sizereturn test_loss,correctepochs=50  #一个epoch代表对全部数据训练一遍train_loss=[]  #每个epoch训练中训练数据集的平均损失被添加到此列表
train_acc=[] #每个epoch训练中训练数据集的平均正确率被添加到此列表
test_loss=[]  #每个epoch训练中测试数据集的平均损失被添加到此列表
test_acc=[] #每个epoch训练中测试数据集的平均正确率被添加到此列表for epoch in range(epochs):#调用train()函数训练epoch_loss,epoch_acc=train(train_dl,model,loss_fn,optimizer)#调用test()函数测试epoch_test_loss,epoch_test_acc=test(test_dl,model)train_loss.append(epoch_loss)train_acc.append(epoch_acc)test_loss.append(epoch_test_loss)test_acc.append(epoch_test_acc)#定义一个打印模版template=("epoch:{:2d},train_loss:{:.5f},train_acc:{:.1f}%,test_loss:{:.5f},test_acc:{:.1f}%")#输出当前的epoch的训练集损失、训练集正确率、测试集损失、测试集正确率print(template.format(epoch,epoch_loss,epoch_acc*100,epoch_test_loss,epoch_test_acc*100))print("Done!")plt.plot(range(1,epochs+1),train_loss,label="train_loss")
plt.plot(range(1,epochs+1),test_loss,label='test_loss',ls="--")
plt.xlabel('epoch')
plt.legend()
plt.show()plt.plot(range(1, epochs + 1), train_acc, label="train_acc")
plt.plot(range(1, epochs + 1), test_acc, label='test_acc', ls="--")
plt.xlabel('acc')
plt.legend()
plt.show()

函数式API

import torch.nn.functional as Fclass Model(nn.Module):def __init__(self):super().__init__()self.conv1=nn.Conv2d(1,6,5)   #初始化第一个卷积层self.conv2=nn.Conv2d(6,16,5)  #初始化第二个卷积层self.liner_1=nn.Linear(16*4*4,256)  #初始化全连接层16*4*4为输入的特征,256为输出的特征#就是将一个大小为16×4×4的输入特征映射到一个大小为256的输出特征空间中self.liner_2=nn.Linear(256,10)  #初始化输出层def forward(self,input):#调用第一个卷积层和池化层x=F.max_pool2d(F.relu(self.conv1(input)),2)#调用第二个卷积层和池化层x=F.max_pool2d(F.relu(self.conv2(x)),2)# view()方法将数据展平为二维形式# torch.Size([64,16,4,4])->torch.Size([64,16*4*4])x=x.view(-1,16*4*4)x=F.relu(self.liner_1(x))  # 全连接层x=self.liner_2(x)  #输出层return x

http://www.lryc.cn/news/268620.html

相关文章:

  • docker学习笔记01-安装docker
  • 【《设计模式之美》】如何取舍继承与组合
  • 一步到位:用Python实现PC屏幕截图并自动发送邮件,实现屏幕监控
  • Spring Boot+RocketMQ 实现多实例分布式环境下的事件驱动
  • oracle ORA-01704: string literal too long ORACLE数据库clob类型
  • 微星主板强刷BIOS(以微星X370gaming plus 为例)
  • matlab 图像上生成指定中心,指定大小的矩形窗
  • ❀My学习小记录之算法❀
  • Hive-high Avaliabl
  • 码住!8个小众宝藏的开发者学习类网站
  • Postman常见问题及解决方法
  • ubuntu图形化登录默认只有guest session账号解决方法
  • 全国计算机等级考试| 二级Python | 真题及解析(1)
  • Java开发框架和中间件面试题(9)
  • 【ARMv8M Cortex-M33 系列 2 -- Cortex-M33 JLink 连接 及 JFlash 烧写介绍】
  • react pwa应用示例
  • python如何通过日志分析加入黑名单
  • RabbitMq知识概述
  • 专业级A链接测试特有
  • Spring Boot 入参校验及全局异常处理
  • MySQL 和 MySQL2 的区别
  • AutoCAD图纸打印后内容不见
  • ASUS华硕ROG幻16 2023款GU603VU VV VI笔记本电脑原厂Win11.22H2系统
  • 学习笔记 k8s常用kubectl命令
  • 企业数据可视化-亿发数据化管理平台提供商,实现一站式数字化运营
  • 网络通信-Linux 对网络通信的实现
  • mysql修改密码
  • 深入解析C语言中void (*signal(int ,void(*)(int) ) ) (int)
  • 网站显示不安全警告怎么办?消除网站不安全警告超全指南
  • [SWPUCTF 2021 新生赛]finalrce