28相似矩阵和若尔当标准型
一、关于正定矩阵的一些补充
在此之前,先讲一下对称矩阵中那些特征值为正数的矩阵,这样特殊的矩阵称为正定矩阵。其更加学术的定义是:
SSS 是一个正定矩阵,如果对于每一个非零向量xxx,xTSx>0x^TSx>0xTSx>0
- 正定矩阵的逆仍然是正定矩阵
- 两个正定矩阵的和仍然是正定矩阵
- S=AATS=AA^TS=AAT 是正定的条件是矩阵 AAA 的列是独立的
对于最后一个结论。矩阵 AAA 是一个 m×nm\times nm×n 普通的矩阵(有可能为长方形),那么对应的矩阵 ATAA^TAATA 一定是对称矩阵。那么这样的 ATAA^TAATA 是一个正定的吗?
AATAA^T AAT
左乘xTx^TxT,右乘 xxx
xTATAx=(Ax)T(Ax)=∣Ax∣2≥0x^TA^TAx=(Ax)^T(Ax)=|Ax|^2\ge0 xTATAx=(Ax)T(Ax)=∣Ax∣2≥0
要保证它一定是正定,Ax=0(x≠0)Ax = 0(x\ne\bold0)Ax=0(x=0) 需要剔除, 这是我们熟悉的,只要 AAA 列满秩就一定只有零解,该条件自然剔除。所以结论是:只要普通方阵列满秩,AATAA^TAAT就一定是一个正定的对称矩阵。
二、相似矩阵
对于m×n矩阵:m\times n矩阵:m×n矩阵:AAA 和 BBB 是相似的,那么存在一些矩阵使得:
B=M−1AMB=M^{-1}AM B=M−1AM
事实上,我们已经接触过一种比较特殊的相似矩阵。假设 AAA 具有线性无关的特征向量,也就是存在特征矩阵 SSS使得:
S−1AS=ΛS^{-1}AS=\Lambda S−1AS=Λ
用这节课的新概念来看, 矩阵 AAA 与对角矩阵 Λ\LambdaΛ 相似,与对角矩阵相似是一个特别简洁的情况。举个例子:
A=[2112]A=\begin{bmatrix}2&1\\1&2\end{bmatrix} A=[2112]
因为矩阵 AAA 是线性无关的,所以必然存在一个逆矩阵 SSS 使得:
S−1AS=Λ=[3001]S^{-1}AS=\Lambda=\begin{bmatrix}3&0\\0&1\end{bmatrix} S−1AS=Λ=[3001]
除了 SSS 很多其他可逆矩阵也可以使得:
M−1AM=BM^{-1}AM=B M−1AM=B
不过矩阵没有这么特殊罢了。比如:
[1−401][2112][1410]=[−2−1516]=B\begin{bmatrix}1&-4\\0&1\end{bmatrix}\begin{bmatrix}2&1\\1&2\end{bmatrix}\begin{bmatrix}1&4\\1&0\end{bmatrix}=\begin{bmatrix}-2&-15\\1&6\end{bmatrix}=B [10−41][2112][1140]=[−21−156]=B
那么这两个矩阵 BBB 和 Λ\LambdaΛ 的共同点是什么呢?它们的特征值相同!相似矩阵具有相同的特征值!\color{red}相似矩阵具有相同的特征值!相似矩阵具有相同的特征值!下面对这个结论进行证明:
Ax=λxAx=\lambda x\\\ Ax=λx
在 AAA 和 xxx之间插入一个 M−1MM^{-1}MM−1M有:
AMM−1x=λxAMM^{-1}x=\lambda x AMM−1x=λx
然后左右两边再乘以 M−1M^{-1}M−1有:
M−1AMM−1x=λM−1xM^{-1}AMM^{-1}x=\lambda M^{-1} x M−1AMM−1x=λM−1x
加上括号有:
(M−1AM)M−1x=λM−1x(M^{-1}AM)M^{-1}x=\lambda M^{-1} x (M−1AM)M−1x=λM−1x
因为:B=M−1AMB=M^{-1}AMB=M−1AM,所以:
BM−1x=λM−1xBM^{-1}x=\lambda M^{-1}x BM−1x=λM−1x
把M−1xM^{-1}xM−1x 看成一个向量,显然 λ\lambdaλ 是矩阵 BBB 的特征向量,故相似矩阵相同的特征值,但是特征向量却发生了改变,变成了M−1xM^{-1}xM−1x
接下来看一下特征值相同的矩阵,前面知识已知:如果特征值相同那么这个矩阵不可以进行对角化,这种情况是“不咋美丽”的情况,但是我们需要对其进行讨论:
假设我们的特征值 λ1=λ2=4\lambda_1=\lambda_2=4λ1=λ2=4,特征值相同的矩阵可以分为两个阵营:
小阵营1:
[4004]\begin{bmatrix}4&0\\0&4\end{bmatrix} [4004]
这个阵营的矩阵只与自己相似。
大阵营2:
[4104]\begin{bmatrix}4&1\\0&4\end{bmatrix} [4014]
它是不能对角化的,因为如果可以对角化,那么就会相似于小阵营。上面的大阵营例子是一个若尔当标准型 (Jordan Form)。事实上,历史的某个时期,若尔当标准型还是压轴内容,现在不是了,最重要的一个原因就是一般的矩阵很难化简为若尔当标准型:条件特征值完全相等。还可以继续列举这样的矩阵:
[51−13][40174]\begin{bmatrix}5&1\\-1&3\end{bmatrix}\quad\begin{bmatrix}4&0\\17&4\end{bmatrix} [5−113][41704]
再列举一个大一些的矩阵:
[0100001000000000]\begin{bmatrix}0&1&0&0\\0&0&1&0\\0&0&0&0\\0&0&0&0\end{bmatrix} 0000100001000000
特征值全是零 λ1=λ2=λ3=λ4=0\lambda_1=\lambda_2=\lambda_3=\lambda_4=0λ1=λ2=λ3=λ4=0,特征向量有几个?等于秩的个数 N(A)=2N(A)=2N(A)=2,有两个特征向量“消失了”。
[0100000000010000]\begin{bmatrix}0&1&0&0\\0&0&0&0\\0&0&0&1\\0&0&0&0\end{bmatrix} 0000100000000010
下面介绍一下若尔当块(Jordan block):
Ji=[λi100λi100λi1⋯⋯⋯⋯]J_i=\begin{bmatrix} \lambda_i&1&&&0\\ 0&\lambda_i&1&&\\ 0&0&\lambda_i&1&\\ \cdots&\cdots&\cdots&\cdots \end{bmatrix} Ji=λi00⋯1λi0⋯1λi⋯1⋯0
对角线上都是相同的特征值 λi\lambda_iλi 特征值右侧都是1,其他地方都是0。每个块都有一个特征向量,我们可以通过数若尔当块确定特征向量的个数。
若尔当定理(Jordan’s theorem):每个方阵 AAA 都相似于一个若尔当阵矩阵 JJJ
J=[J1J2J3⋯]J=\begin{bmatrix}J1&&&&\\&J2\\&&J3\\&&&\cdots\end{bmatrix} J=J1J2J3⋯
若尔当块个数等于特征向量个数。“如果一个矩阵可以对角化,那么这个矩阵相似于对角矩阵”,它是若尔当矩阵的一种特殊情况。最好情况就是对角矩阵。