当前位置: 首页 > news >正文

ZKP Mathematical Building Blocks (2)

MIT IAP 2023 Modern Zero Knowledge Cryptography课程笔记

Lecture 3: Mathematical Building Blocks (Yufei Zhao)

  • Fiat Shamir heuristic
    • Turn an interactive proof to a non-interactive proof
    • P can simulate V
      • whenever V picks a random value
      • P can simulate V’s randomness by running a cryptographic hash function on the transcript so that P can’t cheat by choosing “favorable random challenges”
  • Elliptic Curve
    • y 2 = x 3 + A x + B y^2 = x^3 + Ax + B y2=x3+Ax+B

    • All points in a elliptic curve make a group
      在这里插入图片描述

    • g in the generator of the group G
      在这里插入图片描述

    • Difficult problem:

      • Discrete Log Problem on Elliptic Curve
        • Secret random x generated form Zq
        • Share with the public xG
        • It is hard to recover x from xG
      • Diffie-Hellman Key Exchange (Public key cryptography)
        • Alice takes a random a mod q
        • Bob takes a random b mod q
        • Alice says to the public: aG
        • Bob says to the public: bG
        • So, Alice and Bob share a secret: abG
  • Pairing based cryptography
    • Given cyclic groups G 0 , G 1 , G T G_0, G_1, G_T G0,G1,GT all same prime order q
    • a pairing is a nondegenerate bilinear map
      • e : G 0 × G 1 → G T e: G_0 \times G_1 \rightarrow G_T e:G0×G1GT
    • Properties
      • Bilinear
        • e(x+x’, y) = e(x,y) + e(x’,y)
        • e(x,y+y’) = e(x,y) + e(x,y’)
        • e(ax,y) = ae(x,y) + e(x,ay)
      • Nondegenerated
        • With generator g 0 ∈ G 0 g_0 \in G_0 g0G0 and g 1 ∈ G 1 g_1 \in G_1 g1G1
        • g T = e ( g 0 , g 1 ) ∈ G T g_T = e(g_0, g_1) \in G_T gT=e(g0,g1)GT
    • An application BLS signature scheme (Boneh-Lynn-Shacham)
      • Protocol
        • Keygen: s k = s sk = s sk=s, p k = s g pk = sg pk=sg
        • Sign(sk,m): σ = s H ( m ) \sigma = sH(m) σ=sH(m)
        • Verify(pk,m): check e ( p k , H ( m ) ) = e ( g , σ ) e(pk, H(m)) = e(g,\sigma) e(pk,H(m))=e(g,σ)
      • It can be extended to allow signature aggregation
        • The verifier can collect all the signatures and aggregate them into a single short signature.
        • The verifier can just verify the short signature then he knows that everyone signed their messages correctly.
http://www.lryc.cn/news/266315.html

相关文章:

  • blender径向渐变材质-着色编辑器
  • 2023美团机器人研究院学术年会成功举办
  • swing快速入门(二十七)
  • Vue 封装echarts柱状图(Bar)组件
  • 异常(Java)
  • vue的插槽解析
  • Spring(3)Spring从零到入门 - Spring整合技术及AOP事务管理
  • 适配器模式学习
  • NET中使用Identity+CodeFirst+Jwt实现登录、鉴权
  • 详解Keras3.0 API: Optimizers
  • 【数据结构】字符串匹配|BF算法|KMP算法|next数组的优化
  • 阿里云 ACK One 新特性:多集群网关,帮您快速构建同城容灾系统
  • vscode自定义代码片段
  • 【贪心算法】专题练习一
  • 【JMeter】使用nmon进行性能资源监控
  • Unity预设体
  • Elasticsearch 写入优化探索:是什么影响了refresh 耗时?
  • Java8新特性——函数式接口
  • Epson打印机连接wifi
  • Chapter 7 - 6. Congestion Management in Ethernet Storage Networks以太网存储网络的拥塞管理
  • 【论文笔记】NeuRAD: Neural Rendering for Autonomous Driving
  • 通信原理 | 分贝dB、功率、功率谱、功率谱密度、信噪比
  • Go中的Context是什么?
  • 碳排放预测 | 基于ARIMA和GM(1,1)的碳排放预测(Matlab)
  • FPFA.一种二倍频电路代码描述以及测量详情
  • dotnet命令创建C#项目,VSCode打开
  • 在GitHub找开源项目
  • GAMES101-LAB1
  • Docker 编译OpenHarmony 4.0 release
  • Vue 3 表单处理精讲:打造响应式注册表单的艺术