当前位置: 首页 > news >正文

线性回归简介

线性回归简介

    • 1、情景描述
    • 2、线性回归




1、情景描述


假设,我们现在有这么一张图:
在这里插入图片描述

其中,横坐标x表示房子的面积,纵坐标y表示房价。我们猜想x与y之间存在线性关系: y = k x + b y=kx+b y=kx+b

现在,思考一个问题:如何找到一条直线,使得这条直线尽可能地拟合图中的所有数据点?
在这里插入图片描述

这个找最佳拟合直线的过程称为做线性回归

简而言之,线性回归就是在N维空间中找一个类似直线方程y=kx+b一样的函数来拟合数据

线性回归模型则是利用线性函数对一个或多个自变量(x)和因变量(y)之间的关系进行拟合的模型

这里有一个问题,线性等于直线吗?

线性函数的定义是零阶或一阶多项式。特征是二维时,线性模型在二维空间构成一条直线;特征是三维时,线性模型在三维空间中构成一个平面;以此类推,具体见下文线性回归的定义及推导

还有一个问题,那就是如何评判找的哪条直线才是最优的?详见文章最小二乘法:传送门

2、线性回归


1)线性回归的定义及推导

定义:对于一个有n个特征的样本而言,它的线性回归方程如下:

y = f ( x 1 , x 2 , . . . , x n − 1 ) = ω 0 + w 1 x 1 + w 2 x 2 + . . . + w n − 1 x n − 1 y = f(x_1,x_2,...,x_{n-1}) = \omega_0 + w_1x_1 + w_2x_2 +...+w_{n-1}x_{n-1} y=f(x1,x2,...,xn1)=ω0+w1x1+w2x2+...+wn1xn1

其中, w 0 w_0 w0~ w n − 1 w_{n-1} wn1统称为模型的参数,表示样本有n个特征,有时也用 θ \theta θ β \beta β表示

w 0 w_0 w0称为截距, w 1 w_1 w1~ w n − 1 w_{n-1} wn1称为回归系数(Regression Coefficients), x 1 x_1 x1~ x n − 1 x_{n-1} xn1为样本的输入向量,y为样本的输出向量

根据简单场景推导n个特征的样本线性回归方程过程如下:

假设我们有2个样本:[ x 1 x_1 x1=1, y 1 y_1 y1=1]、[ x 2 x_2 x2=2, y 2 y_2 y2=3],我们猜测其关系符合:
y = k x + b y = kx + b y=kx+b

将样本代入函数:
{ k ∗ 1 + b = 1 k ∗ 2 + b = 3 \begin{cases} k * 1 + b = 1 \\ k * 2 + b = 3 \end{cases} {k1+b=1k2+b=3
从最小次幂排列:
{ b ∗ 1 + k ∗ 1 = 1 b ∗ 1 + k ∗ 2 = 3 \begin{cases} b*1 + k*1 = 1 \\ b*1 + k*2 = 3 \end{cases} {b1+k1=1b1+k2=3
对应到2个特征的线性回归方程模板:
{ b ∗ x 01 + k ∗ x 11 = y 1 b ∗ x 02 + k ∗ x 12 = y 2 \begin{cases} b*x_{01} + k*x_{11} = y_1 \\ b*x_{02} + k*x_{12} = y_2 \end{cases} {bx01+kx11=y1bx02+kx12=y2
转换为矩阵:
[ 1 1 1 2 ] [ b k ] = [ 1 3 ] \left[ \begin{matrix} 1 & 1 \\ 1 & 2 \end{matrix} \right] \left[ \begin{matrix} b \\ k \end{matrix} \right] = \left[ \begin{matrix} 1 \\ 3 \end{matrix} \right] [1112][bk]=[13]

其中, x 0 x_0 x0始终为1。对应到2个特征的线性回归方程模板:
[ 1 x 11 1 x 12 ] [ b k ] = [ y 1 y 2 ] \left[ \begin{matrix} 1 & x_{11} \\ 1 & x_{12} \end{matrix} \right] \left[ \begin{matrix} b \\ k \end{matrix} \right] = \left[ \begin{matrix} y_1 \\ y_2 \end{matrix} \right] [11x11x12][bk]=[y1y2]
推广到一般场景:
[ 1 x 11 x 21 ⋯ x n − 1 , 1 1 x 12 x 22 ⋯ x n − 1 , 2 ⋮ ⋮ ⋮ ⋱ ⋮ 1 x 1 m x 2 m ⋯ x n − 1 , m ] [ ω 0 ω 1 ⋮ ω m − 1 ] = [ y 1 y 2 ⋮ y m ] \left[ \begin{matrix} 1 & x_{11} & x_{21} & \cdots & x_{{n-1},1} \\ 1 & x_{12} & x_{22} & \cdots & x_{{n-1},2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{1m} & x_{2m} & \cdots & x_{{n-1},m} \end{matrix} \right] \left[ \begin{matrix} \omega_0 \\ \omega_1 \\ \vdots \\ \omega_{m-1} \end{matrix} \right] = \left[ \begin{matrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{matrix} \right] 111x11x12x1mx21x22x2mxn1,1xn1,2xn1,m ω0ω1ωm1 = y1y2ym
简化:
X ω = y X\omega=y Xω=y
其中,y为m × \times × 1的矩阵向量,表示模型的理论输出; ω \omega ω为n × \times × 1的矩阵向量,表示模型的样本输入;X为m × \times × n的矩阵向量,m表示样本数,n表示样本的特征数

2)线性回归的解

线性回归的解析解 ω \omega ω推导

假设Y是样本的输出矩阵向量,维度为m × \times × 1,则根据勒让德最小二乘准则有:
J ( ω ) = ∣ ∣ y − Y ∣ ∣ 2 = ∣ ∣ X ω − Y ∣ ∣ 2 = ( X ω − Y ) T ( X ω − Y ) J(\omega) = ||y-Y||^2 = ||X\omega-Y||^2=(X\omega-Y)^T(X\omega-Y) J(ω)=∣∣yY2=∣∣XωY2=(XωY)T(XωY)
根据数学知识,函数导数为0处取极值:
∂ ∂ ω J ( ω ) = 2 X T X ω − 2 X T Y = 0 \frac{\partial}{\partial\omega}J(\omega)=2X^TX\omega-2X^TY=0 ωJ(ω)=2XTXω2XTY=0
解得:
ω = ( X T X ) − 1 X T Y \omega=(X^TX)^{-1}X^TY ω=(XTX)1XTY

3)线性回归解的几何意义

线性回归的解是通过最小二乘法求解的。其几何意义是:求解 Y Y Y X X X的列向量空间中的投影

几何意义的推导后续视情况补充


http://www.lryc.cn/news/266035.html

相关文章:

  • Log4net 教程
  • test-01-java 单元测试框架 junit 入门介绍
  • Linux系统中跟TCP相关的系统配置项
  • python图片批量下载多线程+超时重试
  • 冒泡排序之C++实现
  • 【Spring实战】04 Lombok集成及常用注解
  • ubuntu-22.04.3 配置
  • [工具]java_sublime的快速使用
  • 【银行测试】银行金融测试+金融项目测试点汇总...
  • 将PPT的图保持高分辨率导入到Word / WPS中
  • 如何在Spring Boot中优雅地进行参数校验
  • 图还能有数据库?一文带你了解图数据库是个什么东西!
  • 力扣思维题——寻找重复数
  • 基于Kubernetes的jenkins上线
  • 每日一题——轮转数组
  • Unity手机移动设备重力感应
  • nodejs微信小程序+python+PHP基于推荐算法的电影推荐系统-计算机毕业设计推荐django
  • Linux 配置 swap 区
  • AG16KDDF256 User Manual
  • w15初识php基础
  • powerbuilder Primary! Delete! Filter! 三个缓冲区的作用
  • Confluent 与阿里云将携手拓展亚太市场,提供消息流平台服务
  • 【一起学Rust | 框架篇 | Tauri2.0框架】Tauri2.0环境搭建与项目创建
  • 算法基础之01背包问题
  • Git的总体认知与具体实现
  • Hadoop入门学习笔记——三、使用HDFS文件系统
  • JavaWeb—html, css, javascript, dom,xml, tomcatservlet
  • LangChain 31 模块复用Prompt templates 提示词模板
  • 深入理解 Git 分支管理:提升团队协作与开发效率
  • WPF StackPanel