当前位置: 首页 > news >正文

算法设计与分析2023秋-头歌实验-实验七 动态规划

文章目录

  • 第1关:数塔问题
    • 任务描述
    • 相关知识
    • 编程要求
    • 解题思路
    • 测试说明
    • 参考答案
  • 第2关:最长公共子序列
    • 任务描述
    • 相关知识
    • 编程要求
    • 解题思路:
    • 测试说明
    • 参考答案
  • 第3关:求序列-2 11 -4 13 -5 -2的最大子段和
    • 任务描述
    • 相关知识
    • 编程要求
    • 解题思路:
    • 测试说明
    • 参考答案
  • 第4关:求最长的单调递增子序列长度
    • 任务描述
    • 相关知识
    • 编程要求
    • 解题思路:
    • 测试说明
    • 参考答案
  • 第5关:矩阵连乘问题
    • 任务描述
    • 相关知识
    • 编程要求
    • 测试说明
    • 参考答案

第1关:数塔问题


任务描述

本关任务:编写用动态规划解决数塔问题。

相关知识

为了完成本关任务,你需要掌握:动态规划。

编程要求

image.jpg
求上图从顶层到顶层的一个路径,使路径上的数字和最大。要求输出最大的数字和max和数值和最大的路径。

解题思路

原始信息有层数和数塔中的数据,层数用一个整型变量n存储,数塔中的数据用二维数组data,存储成如下的下三角阵:

             912    1510    6     82     18    9    519    7     10   4   16

必需用二维数组d存储各阶段的决策结果。二维数组d的存储内容如下:、

  d[n][j]=data[n][j],         j=1,2,……,n;d[i][j]=max(d[i+1][j],d[i+1][j+1])+data[i][j],   i=n-1,n-2,……1,j=1,2,……,i   

最后d[1][1]存储的就是问题的结果。

测试说明

平台会对你编写的代码进行测试:
测试输入:

5
9
12    15
10    6     8
2    18     9    5
19    7     10   4   16

输出示例:

max=59
数值和最大的路径是:9->12->10->18->10

参考答案

#include <stdio.h> 
#define N 5 //问题规模
int main() {int a[50][50];a[1][1] = 9;a[2][1] = 12, a[2][2] = 15;a[3][1] = 10, a[3][2] = 6, a[3][3] = 8;a[4][1] = 2, a[4][2] = 18, a[4][3] = 9, a[4][4] = 5;a[5][1] = 19, a[5][2] = 7, a[5][3] = 10, a[5][4] = 4, a[5][5] = 16;int i, j, dp[50][50] = { 0 }, path[50][50] = { 0 };for (j = 1; j <= N; j++)                           //初始子问题 ,倒数第二层(第i-1层)开始dp[N][j] = a[N][j];for (i = N - 1; i >= 1; i--)                       //进行第 i+1 层的决策,从i 到 1 向上for (j = 1; j <= i+1; j++) {                     //每一层有 i+1 个if (dp[i + 1][j] > dp[i + 1][j + 1]) {dp[i][j] = a[i][j] + dp[i + 1][j];path[i][j] = j;                        //本次决策选择下标j的元素}else {dp[i][j] = a[i][j] + dp[i + 1][j + 1];path[i][j] = j + 1;                     //本次决策选择下标j+1的元素}}printf("max=%d\n", dp[1][1]);printf("数值和最大的路径是:");            j = path[1][1];                          //计算dp[1][1]的选择for (i = 1; i < N; i++){printf("%d->", a[i][j]);j = path[i][j];                         //计算dp[i][j]的选择}printf("%d\n", a[i][j]);}
/********** End **********/

第2关:最长公共子序列

任务描述

本关任务:编写用动态规划解决最长公共子序列问题。

相关知识

为了完成本关任务,你需要掌握:动态规划。

编程要求

求字符串序列“ABCDBAB”和“BDCABA”的最长公共子序列

解题思路:

递推关系分析: 设 A=“a0,a1,…,am−1”,B=“b0,b1,…,bn−1”,Z=“z0,z1,…,zk−1” 为它们的最长公共子序列。 有以下结论: 1)如果am−1=bn−1,则zk−1=am−1=bn−1,且“z0,z1,…,zk−2”是“a0,a1,…,am−2”和“b0,b1,…,bn−2”的一个最长公共子序列; 2)如果am−1=bn−1,则若zk−1=am−1,蕴涵“z0,z1,…,zk−1”是“a0,a1,…,am−2”和“b0,b1,…,bn−1”的一个最长公共子序列; 3)如果am−1=bn−1,则若zk−1=bn−1,蕴涵“z0,z1,…,zk−1”是“a0,a1,…,am−1”和“b0,b1,…,bn−2”的一个最长公共子序列。 定义c[i][j]为序列“a0,a1,…,ai−1”和“b0,b1,…,bj−1”的最长公共子序列的长度,计算c[i][j]可递归地表述如下: 1)c[i][j]=0 如果i=0或j=0; 2)c[i][j]=c[i−1][j−1]+1 如果i,j>0,且a[i−1]=b[j−1]; 3)c[i][j]=max(c[i][j−1],c[i−1][j]) 如果i,j>0,且a[i−1]=b[j−1]。 由二维数组c的递归定义,c[i][j]的结果依赖于c[i−1][j−1],c[i−1][j]和c[i][j−1]。可以从c[m][n]开始,跟踪c[i][j]结果的产生过程,从而逆向构造出最长公共子序列。

测试说明

平台会对你编写的代码进行测试:
测试输入:

a=“ABCDBAB”
b=“BDCABA”

输出示例:

BCBA

参考答案

/*动态规划之最大子序列*/
#include <stdio.h>
int main()
{char A[7]={'A','B','C','B','D','A','B'};			char B[6]={'B','D','C','A','B','A'};int dp[8][7];						//dp数组记录最长公共子序列的长度 for(int i=0;i<7;i++)		//边界赋值为0 {dp[i][0]=0;}for(int i=0;i<8;i++){dp[0][i]=0;}// printf("test1=%d\n",dp[6][7]);for(int i=1;i<=7;i++){for(int j=1;j<=6;j++){if(A[i-1]==B[j-1])			//如果相等就dp[i][j]=dp[i-1][j-1]+1; {dp[i][j]=dp[i-1][j-1]+1;}else{if(dp[i-1][j]>dp[i][j-1]){dp[i][j]=dp[i-1][j];   //取两者之间较大者;局部的最优值 }else{dp[i][j]=dp[i][j-1];} 	}}}char str[100];							//记录公共的字符int i=7,j=6;int count=0;while(i>0&&j>0){if(dp[i][j]==dp[i-1][j])			//往上遍历 {i--;}else if(dp[i][j]==dp[i][j-1])		//往左遍历 {j--;}else{str[count++]=A[i-1];i--;j--;}}for(int i=count-1;i>=0;i--){printf("%c",str[i]);} }

第3关:求序列-2 11 -4 13 -5 -2的最大子段和

任务描述

本关任务:编写用动态规划解决最大子段和问题。

相关知识

为了完成本关任务,你需要掌握:动态规划。

编程要求

给定由n个整数(可能为负数)组成的序列:a1,a2,……,an, 求该序列的最大子段和。当所有整数均为负数,定义其最大子段和为0。

解题思路:

定义b[j]=max(a[i]+a[i+1]+…+a[j]),其中1<=i<=j,并且1<=j<=n。那么所求的最大子段和可以表示为max b[j],1<=j<=n。 由b[j]的定义可知,当b[j−1]>0时b[j]=b[j−1]+a[j],否则b[j]=a[j]。故b[j]的动态规划递归表达式为: b[j]=max(b[j−1]+a[j],a[j]),1<=j<=n。

测试说明

平台会对你编写的代码进行测试:
测试输入:

6
-2 11 -4 13 -5 -2

输出示例:

20

参考答案

#include <stdio.h>
/********** Begin **********/
int main(){int n;scanf("%d",&n);int a[n][2];int max=0;for(int i=0;i<n;i++){scanf("%d",&a[i][0]);if(i==0){a[i][1]=a[i][0];}else{a[i][1]=a[i-1][1]+a[i][0]>a[i][0]?a[i-1][1]+a[i][0]:a[i][0];}max=max>a[i][1]?max:a[i][1];}printf("%d",max);return 0;}
/********** End **********/

第4关:求最长的单调递增子序列长度

任务描述

本关任务:编写用动态规划解决求最长的单调递增子序列长度问题。

相关知识

为了完成本关任务,你需要掌握:动态规划。

编程要求

给定一个长度为n的数组,找出一个最长的单调递增子序列(不一定连续,但是顺序不能乱)。例如:给定一个长度为7的数组A5,6,7,1,2,8,9,则其最长的单调递增子序列为5,6,7,8,9,长度为5。求318714101223411624的最长的单调递增子序列长度。

解题思路:

设长度为n的数组为(a[0],a[1],a[2],…,a[n−1]),则假定以a[j]结尾的数组序列的最长递增子序列长度为L(j),则L(j)=max(L(i))+1,i<j且a[i]<a[j]。也就是说,我们需要遍历在j之前的所有位置i(从0到j−1),找出满足条件a[i]<a[j]的L(i),求出max(L(i))+1即为L(j)的值。最后,我们遍历所有的L(j)(从0到n−1),找出最大值即为最大递增子序列。

测试说明

平台会对你编写的代码进行测试:
测试输入:

10
3 18 7 14 10 12 23 41 16 24

输出示例:

6

参考答案

#include <stdio.h>
/********** Begin **********/
int main(){int n;scanf("%d",&n);int m[n][3];m[0][1]=1;m[0][2]=0;for(int i=0;i<n;i++){scanf("%d",&m[i][0]);if(i!=0){m[i][1]=0;int k=i-1;while(k>=0){if(m[i][0]>m[k][0]){if(k==i-1){m[i][1]=m[k][1]+1;m[i][2]=k;}else{int max=m[k][1]+1;if(max>m[i][1]){m[i][1]=max;m[i][2]=k;	}}}k--;}if(k<0&&m[i][1]==0){m[i][1]=1;m[i][2]=i;}}}int max=m[0][1],j=0;for(int i=0;i<n;i++){if(m[i][1]>=max){max=m[i][1];j=i;}}printf("%d\n",max);
}
/********** End **********/

第5关:矩阵连乘问题

任务描述

本关任务:编写用动态规划解决矩阵连乘问题。

相关知识

为了完成本关任务,你需要掌握:动态规划。

编程要求

将矩阵连乘积AiAi+1…Aj简记为A[i:j],其中i<=j。设在矩阵Ak和Ak+1之间将矩阵链断开,则其相应加括号为(AiAi+1…Ak) (Ak+1Ak+2…Aj)。A[i:j]的计算量等于三部分计算量之和: (1)A[i:k]的计算量, (2)A[k+1:j]的计算量, (3)A[i:k]与A[k+1:j]相乘的计算量。 设计算A[i:j]所需最少乘积数目为,则原问题的最优值为。 当i=j时,a[i:j]=Ai,因此,m[i][j]=0,i=1,⋅⋅⋅,n 当i<j时,m[i][j]=i<k<jmin{m[i][k]+m[k+1][j]+pi−1pkpj} 其中,矩阵Ai的矩阵数为pi−1×pi 矩阵A1的维度:p0p1=3035 矩阵A2的维度:p1p2=3515 矩阵A3的维度:p2p3=155 矩阵A4的维度:p3p4=510 矩阵A5的维度:p4p5=1020 矩阵A6的维度:p5p6=2025 求这6个矩阵连乘的最小相乘次数。

测试说明

平台会对你编写的代码进行测试:
测试输入:

6
30 35
35 15
15 5
5 10
10 20
20 25

输出示例:

m[1][6]=15125

参考答案

#include <stdio.h>
#include <stdlib.h>
/********** Begin **********/
int main(){int n;scanf("%d",&n);int a[n][2];int b[n][n]={0};for(int i=0;i<n;i++){scanf("%d %d",&a[i][0],&a[i][1]);   }for(int i=1;i<n;i++){for(int j=0;j<n-i;j++){b[j][j+i]=b[j][j]+b[j+1][j+i]+a[j][0]*a[j][1]*a[j+i][1];         int k=j+1;for(;k<j+i;k++){int t=b[j][k]+b[k+1][j+i]+a[j][0]*a[k][1]*a[j+i][1];if(t<b[j][j+i]) {b[j][j+i]=t;}}}}printf("m[%d][%d]=%d",1,n,b[0][n-1]);return 0;
}
/********** End **********/
http://www.lryc.cn/news/263720.html

相关文章:

  • 复杂 SQL 实现分组分情况分页查询
  • JavaScript---如何完美的判断返回对象是否有值
  • kafka offset sasl加密连接
  • Android studio矩形背景颜色以及弧度的设置
  • Acrel-1000DP分布式光伏系统在某重工企业18MW分布式光伏中应用——安科瑞 顾烊宇
  • 3 python基本语法 - Dict 字典
  • Magnific AI:彻底改变 AI 生成图像的升级
  • BKP 备份寄存器 RTC 实时时钟-stm32入门
  • 1.1 数据结构-数据的表示
  • UNIX Linux系统 启动PPOCRLabel报错[已放弃 (核心已转储)]
  • 前端开发中的webpack打包工具
  • Mybatis配置-数据库厂商标识(databaseIdProvider)
  • 【Java】使用递归的方法获取层级关系数据demo
  • 工业6轴机械臂运动学逆解(解析解)
  • 管理类联考——数学——真题篇——按题型分类——充分性判断题——蒙猜A/B
  • 为什么GRU和LSTM能够缓解梯度消失或梯度爆炸问题?
  • 【力扣100】146.LRU缓存
  • 【Vue中给输入框加入js验证_blur失去焦点进行校验】
  • vue3项目引入电子签名(可横屏竖屏)
  • mysql中count(*)、count(1)、count(主键)、count(字段)的区别
  • Nginx生成自签名证书从而添加域名的HTTPS访问
  • 无框架Java转go语言写http与tcp请求
  • 【Git】Git基本操作
  • JavaSE学习笔记 Day20
  • 【蓝桥杯选拔赛真题52】python空调模式 第十四届青少年组蓝桥杯python 选拔赛比赛真题解析
  • Android Studio: 解决Gradle sync failed 错误
  • 【手写数据库】从零开始手写数据库内核,行列混合存储模型,学习大纲成型了
  • 机器学习中的一些经典理论定理
  • c语言:成本100元,40%的利润怎么计算|练习题
  • 【Python必做100题】之第二十二题(复制列表)