当前位置: 首页 > news >正文

1.1 数据结构-数据的表示

文章目录

  • 1.1.1 二元关系及其性质:
  • 1.1.1.1 笛卡尔积:
  • 1.1.1.2 二元关系:
  • 持续更新当中 .......

1.1.1 二元关系及其性质:

数据的基本单元称为额数据元素,数据是从客观事物的观测中的到的,数据元素并不是鼓励存在的,而是存在密切的联系,也因此才能表示和描述客观事物,数据元素之间的联系,归纳起来有三种,即一对一,一对多的联系,和多对多的联系. 无论哪一种联系.都可以借助于二元关系进行描述;因此"二元关系"是描述数据元素关系的基础.
​ 二元关系是一个数学概念,他定义在集合的基本运算-----笛卡尔积(英文叫Cartesian product)的基础上.因此下面将从集合的笛卡尔积的定义来出发,来解释二元关系的概念及其性质。

1.1.1.1 笛卡尔积:

​ 对于两个集合可以定义一种成绩运算,即集合的笛卡尔积.

​ 比如集合只有M和N,分别表示为M={x},N={y} ,则集合M和N的笛卡尔积,记作:M X N,定义为:

M x N = { (x,y) | x ∈ M 且 y ∈ N}

也就是说,两个集合M和N的笛卡尔积也是一个集合,这个集合 M x N 中的每个元素都是一个二元组,称为有序或者序偶. 有序对的地一个元素来自第一个集合M,有序对的集合的第二元素来自于第二个集合N. 笛卡尔积M x N将取遍集合M和N中所有的元素组合,如果集合M中的元素个数为m,集合N的元素个数是n那么M x N中的元素个数为 m x n

​ 例如: M = (a1,a2) ,N = (0,1,2) 则 :

M x N = {(a1,0),(a1,2),(a1,2),(a2,0),(a2,2),(a2,2)}

​ 笛卡尔积的元素是有序对,因此集合的笛卡尔积是不可交换的,即:

M x N ≠ N x M

1.1.1.2 二元关系:

​ 有了集合的笛卡尔积,就可以进一步讨论二元关系,

​ 定义:设有集合M,N ,其笛卡尔积 M x N 的任意一个子集 R ∈ M x N ,被称为 M到N的一个二元关系.

​ 二元关系表示了集合M和集合N中元素之间的某种相关性.若有序对 (a,b) ∈ R ,也可以记作 aRb,则称a是b的关于R的前件,或者说直接前驱;b是a关于R的后件或者说直接后继.

​ 举例:

​ 我们假如有一个学生学习语文,数学和英文,表示为 M = {语文,数学,英语}

​ 那我们设定成绩为四个等级 ,记作 N = {A,B,C,D}

​ 这个学生成绩的全部可能为:

{ (语文, A),(语文, B),(语文, C),(语文, D),(数学, A),(数学, B),(数学, C),(数学, D),(英语, A),(英语, B),(英语, C),(英语, D)}

如果这个学生的实际成绩R = {(语文, B),(数学, A),(英语, D)}那么我们看到的R是笛卡尔积 MxN的一个子集, 因此R是M到N的一个二元关系,他表示了这个学生的功课和成绩的对应关系;

​ 二元关系是普遍存在的,例如实数域上相等关系 = ,小于等于关系 ,平面上的三角形的全等三角形关系.生活中父子关系,同班同学关系等

  1. 相等关系(=): 在实数域上,相等关系是一个二元关系,表示两个数在数值上相等。例如,3=33=3 表示 3 等于 3。
  2. 小于等于关系(≤): 这是实数域上的另一个二元关系,表示一个数小于或等于另一个数。例如,2≤52≤5 表示 2 小于或等于 5。
  3. 全等关系: 在平面几何中,全等关系表示两个三角形或其他几何形状在形状和大小上完全相同。这是一种二元关系,通常使用符号 ≅≅ 表示。例如,如果两个三角形的对应边和对应角相等,则它们是全等的。
  4. 父子关系: 在家庭结构中,父子关系是一个二元关系,表示父母和子女之间的连接。如果 A 是 B 的父母,我们可以表示为 (A,B) 属于父子关系。
  5. 同学关系: 在学校环境中,同学关系表示两个学生在同一个班级中学习。如果 A 和 B 是同班同学,我们可以表示为(A,B) 属于同学关系。

持续更新当中 …

http://www.lryc.cn/news/263711.html

相关文章:

  • UNIX Linux系统 启动PPOCRLabel报错[已放弃 (核心已转储)]
  • 前端开发中的webpack打包工具
  • Mybatis配置-数据库厂商标识(databaseIdProvider)
  • 【Java】使用递归的方法获取层级关系数据demo
  • 工业6轴机械臂运动学逆解(解析解)
  • 管理类联考——数学——真题篇——按题型分类——充分性判断题——蒙猜A/B
  • 为什么GRU和LSTM能够缓解梯度消失或梯度爆炸问题?
  • 【力扣100】146.LRU缓存
  • 【Vue中给输入框加入js验证_blur失去焦点进行校验】
  • vue3项目引入电子签名(可横屏竖屏)
  • mysql中count(*)、count(1)、count(主键)、count(字段)的区别
  • Nginx生成自签名证书从而添加域名的HTTPS访问
  • 无框架Java转go语言写http与tcp请求
  • 【Git】Git基本操作
  • JavaSE学习笔记 Day20
  • 【蓝桥杯选拔赛真题52】python空调模式 第十四届青少年组蓝桥杯python 选拔赛比赛真题解析
  • Android Studio: 解决Gradle sync failed 错误
  • 【手写数据库】从零开始手写数据库内核,行列混合存储模型,学习大纲成型了
  • 机器学习中的一些经典理论定理
  • c语言:成本100元,40%的利润怎么计算|练习题
  • 【Python必做100题】之第二十二题(复制列表)
  • Java 数据结构篇-实现堆的核心方法与堆的应用(实现 TOP-K 问题:最小 k 个数)
  • startUML6.0.1破解方法
  • Python实现多种图像分割方法:基于阈值分割和基于区域分割
  • SQL学习笔记+MySQL+SQLyog工具教程
  • SpringBoot的日志管理
  • leetcode---76. 最小覆盖子串 [C++/滑动窗口+哈希表]
  • Kafka 分级存储在腾讯云的实践与演进
  • 域架构下的功能安全思考
  • python多线程介绍