当前位置: 首页 > news >正文

CODESYS的Robotics_PickAndPlace_without_Depictor例程解释

1.简介

在CODESYS的例程中,有一个例程演示了如何控制delta机械手从一个移动的转盘中拾取一个工件(ring,圆环),然后放到移动的传送带上的托盘(cone,圆锥)中。这个例程在【C:\Program Files (x86)\CODESYS 3.5.19.40\CODESYS\CODESYS SoftMotion\Examples\Tutorial】里面。此例程还没用到电子凸轮功能。
在这里插入图片描述估计是为了演示坐标的精准性,例程使用的是工件是圆环,托盘是圆锥,也就是把转盘中的圆环拾取起来,然后放置到圆锥上,套在上面。如下图所示:
在这里插入图片描述
主要难点是从一个运动的系统中拾取东西,然后放到另外一个运动的系统中。
需要特别注意的是,此例程中三个运动的主体:转盘、delta机械手、传送带,他们都是由CODESYS控制的。只有这样,他们之间才能快速地通讯、变换、同步。(主要是信息的同步,假如三个不是都由CODESYS控制,应该也是可以的,但是保证各个工件、设备的位置、速度等因素能够及时同步)。

2.功能块介绍

这里先介绍用到的一些关键的功能块。

2.1.MC_TrackConveyorBelt

此功能块的主要作用是将传送带上工件的坐标系与机械手的PCS坐标系进行绑定(或者叫映射)。
其输入输出参数为:
在这里插入图片描述

AxisGroup:与机械手关联的轴组
ConveyorBelt:与传送带关联的轴

Execute:在上升沿执行
ConveyorBeltOrigin:指明传送带坐标系在世界坐标中的位置以及姿态。其中此坐标系的X轴必须指向传送带的运动方向。
InitialObjectPosition:指明被跟踪的物体(更准确的描述可能是物体的坐标原点)的初始位置及姿态(在传送带坐标系下)
CoordSystem:指明使用哪个产品坐标系(PCS_1或者PCS_2,只分配了两个,一般一个是用来拾取、一个是用来放下)

Done:此变换已经被成功设置。
Busy:此功能块还未执行完成。
InUse:表示轴组是否仍然需要引用的动态坐标系统。假如这个值为true,然后Execute上出现一个上升沿的话,会出现【SMC_AXIS_GROUP_PCS_STILL_IN_USE】错误;为了保持这个输出值为最新,此功能块需要放在连续执行的地方(哪怕Done已经为true);在到达用另外的坐标系表示的坐标之前,这个值会一直为True。
Error:表示功能块是否出现了错误
ErrorID:具体的错误id。

在手册中,有提到一个使用流程:
在这里插入图片描述工件是放置在传送带上,传送带以速度Vcb运行。

  • 在t0时刻,工件被相机捕捉到,并且被识别出他的位置和姿态;
  • 同时,点P(工件上的点)以PCS为坐标系的运动开始了。机械手也开始从等待点(或者叫空闲点?)W(以MCS为坐标系)开始往P(以PCS)点移动。
  • 在t1时刻,机械臂到达了P点。同时,传送带移动了dx0_1这段距离。
  • 在到达了P点后,针对工件的操作便可以开始。在操作时,与位置相关的,一定要记得使用PCS坐标系。
  • 在t2时刻,针对工件的处理已经完成,机械臂开始返回等待点W(以MCS为坐标系)。

可能会让人感到疑惑的是,在t1-t2时间中,机械臂是如何跟随着工件相对静止地操作的。
在例程中,其实并没有使用跟随(相对静止移动)这一个功能。而是:到达圆锥上方–立马下降放置工件–立马上升离开圆锥–立马返回等待点。可能是因为这一连串动作都是在PCS坐标系下操作,从某个角度看起来就像相对静止?

在此功能块执行完( Execute的上升沿为开始,Done为True为结束)之后,传送带上工件的坐标系会被关联至机械手上PCS坐标系中。关联之后,这个坐标系可能还会绑定了传送带的位移之类,成为一个动态坐标系。
当机械手需要走到工件的上方时,只需要在调用MC_MoveLinearAbsolute等运动功能块时,指定目标位置的坐标系统使用PCS即可。
在这里插入图片描述
总而言之,这个功能块是用来绑定工件的坐标系到机械臂的PCS坐标系的(或者说跟踪?)。

2.2.MC_TrackRotaryTable

这个和前面的MC_TrackConveyorBelt功能块差不多。只不过这个功能块是处理圆盘的。
在这里插入图片描述

http://www.lryc.cn/news/262722.html

相关文章:

  • 通过全流量分析Web业务性能好坏
  • 【C语言】自定义类型——枚举、联合体
  • 大模型自定义算子优化方案学习笔记:CUDA算子定义、算子编译、正反向梯度实现
  • 【密码学基础】Diffie-Hellman密钥交换协议
  • 最新AI绘画Midjourney绘画提示词Prompt教程
  • AI助力DevOps新时代
  • Spring之容器:IOC(2)
  • Spring 依赖查找知识点总结
  • html5新增特性
  • 4、APScheduler: 详解Scheduler种类用法、常见错误与解决方法【Python3测试任务管理总结】
  • 微服务实战系列之ZooKeeper(实践篇)
  • C++ 开发中为什么要使用继承
  • 2020蓝桥杯c组纸张大小
  • 【Image】图像处理
  • JAVA对文档加密
  • EmbedAI:一个可以上传文件训练自己ChatGPT的AI工具,妈妈再也不用担心我的GPT不会回答问题
  • runCatching异常捕获onSuccess/onFailure返回函数,Kotlin
  • IDEA报错处理
  • 使用动画曲线编辑器打造炫酷的3D可视化ACE
  • 使用 React 和 ECharts 创建地球模拟扩散和飞线效果
  • http状态码(一)400报错
  • 【深度学习目标检测】五、基于深度学习的安全帽识别(python,目标检测)
  • 芒果RT-DETR改进实验:深度集成版目标检测 RT-DETR 热力图来了!支持自定义数据集训练出来的模型
  • c语言实验八
  • ArcGIS Pro SDK文件选择对话框
  • ACT、NAT、NATPT和EASY-IP
  • HTML实现每天单词积累
  • 【ECMAScript笔记二】运算符分类,流程控制(顺序结构、分支结构、循环结构)
  • ShenYu网关注册中心之Zookeeper注册原理
  • 高级C#技术(二)