当前位置: 首页 > news >正文

Python-折线图可视化

折线图可视化

  • 1.JSON数据格式
  • 2.pyecharts模块介绍
  • 3.pyecharts快速入门
  • 4.创建折线图

1.JSON数据格式

1.1什么是JSON

  • JSON是一种轻量级的数据交互格式。可以按照JSON指定的格式去组织和封装数据
  • JSON本质上是一个带有特定格式的字符串
    1.2主要功能
  • json就是一种在各个编程语言中流通的数据格式,负责不同编程语言中的数据传递和交互
    1.3JSON有什么用
  • 各种编程语言存储数据的容器不尽相同,在Python中有字典dict这样的数据类型, 而其它语言可能没有对应的字典
  • 为了让不同的语言都能够相互通用的互相传递数据,JSON就是一种非常良好的中转数据格式。如下图,以Python和C语言互传数据为例:
    在这里插入图片描述
    json格式数据转化
  • json格式的数据要求很严
# json数据的格式可以是: 
{"name":"admin","age":18} # 也可以是:  
[{"name":"admin","age":18},{"name":"root","age":16},{"name":"张三","age":20}]

Python数据和Json数据的相互转化

# 导入json模块 
import json # 准备符合格式json格式要求的python数据 
data = [{"name": "老王", "age": 16}, {"name": "张三", "age": 20}]# 通过 json.dumps(data) 方法把python数据转化为了 json数据 
data = json.dumps(data) # 通过 json.loads(data) 方法把json数据转化为了 python数据 
data = json.loads(data)

2.pyecharts模块介绍

pyecharts模块

  • 如果想要做出数据可视化效果图, 可以借助pyecharts模块来完成

  • 概况 : Echarts 是个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可. 而 Python 是门富有表达力的语言,很适合用于数据处理. 当数据分析遇上数据可视化时pyecharts 诞生了.

pyecharts模块安装

  • 使用在前面学过的pip命令即可快速安装PyEcharts模块

  • pip install pyecharts
    在这里插入图片描述

3.pyecharts快速入门

3.1pyecharts入门

  • 基础折线图
# 导包
from pyecharts.charts import Line
from pyecharts.options import TitleOpts
from pyecharts.options import LegendOpts
from pyecharts.options import ToolboxOpts
from pyecharts.options import VisualMapOpts
# 创建一个折线图对象
line = Line()
# 给折线对象添加x轴的数据
line.add_xaxis(["中国","美国","英国"])
# 给折线对象添加y轴的数据
line.add_yaxis("GDP",[30,20,10])
# 设置全局变量项set_global_opts来设置
line.set_global_opts(title_opts=TitleOpts(title="GDP展示",pos_left="center",pos_bottom="1%"),legend_opts=LegendOpts(is_show=True),toolbox_opts=ToolboxOpts(is_show=True),visualmap_opts=VisualMapOpts(is_show=True)
)
# 通过render方法,将代码生成图像
line.render()

在这里插入图片描述

pyecharts有哪些配置选项
set_global_opts方法(全局配置)

  • 配置图标和标题
  • 配置图例
  • 配置鼠标移动效果
  • 配置工具栏
  • 等整体配置项
    在这里插入图片描述

4.创建折线图

4.1导入模块

import  json
from pyecharts.charts import Line
from pyecharts.options import TitleOpts,LabelOpts

折线图相关配置
在这里插入图片描述

  • add_yaxis相关配置
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  • set_global_opts全局配置选项
    在这里插入图片描述
import  json
from pyecharts.charts import Line
from pyecharts.options import TitleOpts,LabelOpts,InitOpts,AxisOpts,LegendOpts
# 处理数据
f_us=open("D:/美国.txt","r",encoding="UTF-8")
f_jp=open("D:/日本.txt","r",encoding="UTF-8")
f_in=open("D:/印度.txt","r",encoding="UTF-8")
us_data = f_us.read() # 美国的全部内容
jp_data = f_jp.read() # 日本的全部内容
in_data = f_in.read() # 印度的全部内容
# 去掉不合JSON规范的开头
us_data = us_data.replace("jsonp_1629344292311_69436(","")
jp_data = jp_data.replace("jsonp_1629350871167_29498(","")
in_data = in_data.replace("jsonp_1629350745930_63180(","")
# 去掉不合JSON规范的结尾
us_data = us_data[:-2]
jp_data = jp_data[:-2]
in_data = in_data[:-2]
# JSON转Python字典
us_dict = json.loads(us_data)
jp_dict = json.loads(jp_data)
in_dict = json.loads(in_data)
# 获取trend key
us_trend_data = us_dict['data'][0]['trend']
jp_trend_data = jp_dict['data'][0]['trend']
in_trend_data = in_dict['data'][0]['trend']
# 获取日期数据,用于x轴,取2020年(到314下标结束)
us_x_data = us_trend_data['updateDate'][:314]
jp_x_data = jp_trend_data['updateDate'][:314]
in_x_data = in_trend_data['updateDate'][:314]# 获取确认数据,用于Y轴,取2020年(到314下标结束)
us_y_data = us_trend_data['list'][0]['data'][:314]
jp_y_data = jp_trend_data['list'][0]['data'][:314]
in_y_data = in_trend_data['list'][0]['data'][:314]# 生成图表
line = Line(init_opts=InitOpts(width="1600px",height="800px"))
# 添加x轴数据
line.add_xaxis(us_x_data)  # x轴是公用的,所以使用一个国家的数据即可
# 添加y轴数据
line.add_yaxis("美国确诊人数",us_y_data,label_opts=LabelOpts(is_show=False))
line.add_yaxis("日本确诊人数",jp_y_data,label_opts=LabelOpts(is_show=False))
line.add_yaxis("印度确诊人数",in_y_data,label_opts=LabelOpts(is_show=False))
# 设置全局选项
line.set_global_opts(title_opts=TitleOpts(title="2020年美日印三国确诊人数对比折线图",pos_left="center",pos_bottom="1%"),# x轴配置项xaxis_opts=AxisOpts(name="时间"),    # 轴标题# y轴配置项yaxis_opts=AxisOpts(name="累计确诊人数"),    # 轴标题# 图例配置项legend_opts=LegendOpts(pos_left='70%'),    # 图例的位置
)
# 调用render方法,生成图标
line.render()
# 关闭文件
f_us.close()
f_jp.close()
f_in.close()

在这里插入图片描述

http://www.lryc.cn/news/261962.html

相关文章:

  • C++类与对象 (上)
  • no module named ‘xxx‘
  • Go实现MapReduce
  • Axure的交互样式和情形
  • Mybatis在新增某个数据后,如何获取新增数据的id
  • 12.4~12.14概率论复习与相应理解(学习、复习、备考概率论,这一篇就够了)
  • 关于多重背包的笔记
  • 如何使用 Java 的反射
  • PLC-Recorder V3 修改服务器和客户端通讯端口的方法
  • libevent服务GET/POST的简单使用
  • MySQL 系列:注意 ORDER 和 LIMIT 联合使用的陷阱
  • 通过实例理解OAuth2授权
  • MATLAB2022安装下载教程
  • 从零开始搭建Go语言开发环境
  • vite+vue3+ts+tsx+ant-design-vue项目框架搭建
  • 【5G PHY】5G小区类型、小区组和小区节点的概念介绍
  • 创建个人网站(一)从零开始配置环境,搭建项目
  • fripside - promise lrc
  • 网络连接和协议
  • MySQL数据库,表的增量备份与恢复
  • 13.Spring 整合 Kafka + 发送系统通知 + 显示系统通知
  • windows 服务器 怎么部署python 程序
  • Chapter 7 - 2. Congestion Management in Ethernet Storage Networks以太网存储网络的拥塞管理
  • 深入理解前端项目中的 package.json
  • 4-Docker命令之docker build
  • Hdfs java API
  • 大数据Doris(三十七):索引和Rollup基本概念和案例演示
  • 2019年第八届数学建模国际赛小美赛B题数据中心冷出风口的设计解题全过程文档及程序
  • mmpose 使用笔记
  • <url-pattern>/</url-pattern>与<url-pattern>/*</url-pattern>的区别