当前位置: 首页 > news >正文

将VOC2012格式的数据集转为YOLOV8格式

文章目录

  • 简介
  • 1.数据集格式
    • 1.1数据集目录格式对比
    • 1.2标签格式对比
  • 2.格式转换脚本
  • 3.文件处理脚本

简介

  1. 将voc2012中xml格式的标签转为yolov8中txt格式
  2. 将转换后的图像和标签按照yolov8训练的要求整理为对应的目录结构

1.数据集格式

1.1数据集目录格式对比

(1)VOC2012的数据集文件目录如下:
在这里插入图片描述
(2)YOLOv8需要的文件目录
在这里插入图片描述
同时需要生成关于训练集、验证集和测试集图像目录的txt文件,最好是绝对路径
在这里插入图片描述
在这里插入图片描述

1.2标签格式对比

(1)voc数据集标签
在这里插入图片描述
(2)YOLO数据集标签
每一行代表一个目标框的信息:{class_index} {x_center} {y_center} {width} {height}
在这里插入图片描述

2.格式转换脚本

修改脚本中文件目录,然后运行:

python3 trans_voc_yolo.py
# -*- coding: utf-8 -*-
# 在脚本中,你需要将`voc_labels_folder`和`output_folder`两个变量设置为正确的路径
# 分别是VOC2012数据集的XML标签文件夹路径和转换后的YOLO格式标签文件夹路径。同时,你还需要根据VOC2012数据集的类别列表自定义`class_names`变量的内容。
# 执行脚本后,它会遍历VOC2012数据集的XML标签文件夹中的每个XML文件,解析其中的目标实例信息,并将它们转换为YOLO格式的txt标签文件。
# 转换后的txt文件将保存在指定的输出文件夹中,每个txt文件对应相应的XML文件。
# 请确保脚本中的文件路径正确,并提前创建好输出文件夹。运行脚本后,你会在输出文件夹中得到与VOC2012数据集中的每个XML标签文件对应的YOLO格式txt标签文件。import xml.etree.ElementTree as ET
import osvoc_labels_folder = 'Annotations/'  # VOC2012的XML标签文件夹路径
output_folder = 'yolo_labels/'  # 转换后的YOLO格式标签文件夹路径
class_names = ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable','dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor']  # 类别名称列表if not os.path.exists(output_folder):os.makedirs(output_folder)for xml_file in os.listdir(voc_labels_folder):tree = ET.parse(os.path.join(voc_labels_folder, xml_file))root = tree.getroot()image_width = int(root.find('size/width').text)image_height = int(root.find('size/height').text)txt_file = xml_file.replace('.xml', '.txt')txt_path = os.path.join(output_folder, txt_file)with open(txt_path, 'w') as f:for obj in root.findall('object'):class_name = obj.find('name').textclass_index = class_names.index(class_name)bbox = obj.find('bndbox')x_min = int(float(bbox.find('xmin').text))y_min = int(float(bbox.find('ymin').text))x_max = int(float(bbox.find('xmax').text))y_max = int(float(bbox.find('ymax').text))x_center = (x_min + x_max) / (2 * image_width)y_center = (y_min + y_max) / (2 * image_height)width = (x_max - x_min) / image_widthheight = (y_max - y_min) / image_heightf.write(f'{class_index} {x_center} {y_center} {width} {height}\n')

3.文件处理脚本

将数据集按照7:2:1的比例划分为训练集、验证集和测试集,并生成相应的目录

python3 split_train_val_test.py
# -*- coding: utf-8 -*-import os
import random
import shutil# 设置文件路径和划分比例
root_path = "/home/lusx/data/voc_yolo/"
image_dir = "JPEGImages/"
label_dir = "labels_sum/"
train_ratio = 0.7
val_ratio = 0.2
test_ratio = 0.1# 创建训练集、验证集和测试集目录
os.makedirs("images/train", exist_ok=True)
os.makedirs("images/val", exist_ok=True)
os.makedirs("images/test", exist_ok=True)
os.makedirs("labels/train", exist_ok=True)
os.makedirs("labels/val", exist_ok=True)
os.makedirs("labels/test", exist_ok=True)# 获取所有图像文件名
image_files = os.listdir(image_dir)
total_images = len(image_files)
random.shuffle(image_files)# 计算划分数量
train_count = int(total_images * train_ratio)
val_count = int(total_images * val_ratio)
test_count = total_images - train_count - val_count# 划分训练集
train_images = image_files[:train_count]
for image_file in train_images:label_file = image_file[:image_file.rfind(".")] + ".txt"shutil.copy(os.path.join(image_dir, image_file), "images/train/")shutil.copy(os.path.join(label_dir, label_file), "labels/train/")# 划分验证集
val_images = image_files[train_count:train_count+val_count]
for image_file in val_images:label_file = image_file[:image_file.rfind(".")] + ".txt"shutil.copy(os.path.join(image_dir, image_file), "images/val/")shutil.copy(os.path.join(label_dir, label_file), "labels/val/")# 划分测试集
test_images = image_files[train_count+val_count:]
for image_file in test_images:label_file = image_file[:image_file.rfind(".")] + ".txt"shutil.copy(os.path.join(image_dir, image_file), "images/test/")shutil.copy(os.path.join(label_dir, label_file), "labels/test/")# 生成训练集图片路径txt文件
with open("train.txt", "w") as file:file.write("\n".join([root_path + "images/train/" + image_file for image_file in train_images]))# 生成验证集图片路径txt文件
with open("val.txt", "w") as file:file.write("\n".join([root_path + "images/val/" + image_file for image_file in val_images]))# 生成测试集图片路径txt文件
with open("test.txt", "w") as file:file.write("\n".join([root_path + "images/test/" + image_file for image_file in test_images]))print("数据划分完成!")
http://www.lryc.cn/news/259711.html

相关文章:

  • DevExpress WinForms Pivot Grid组件,一个类似Excel的数据透视表控件(二)
  • 为什么越来越多的人从事软件测试行业?
  • ERP数据仓库模型
  • 基于单片机的智能小车 (论文+源码)
  • Redis和MySQL双写一致性实用解析
  • win10彻底永久关闭自动更新的方法
  • 【webpack】初始化
  • 服务器GPU占用,kill -9 PID 用不了,解决办法
  • Vue学习笔记-Vue3中的toRaw和markRaw
  • 【Android Audio Focus 音频焦点】
  • ChatGPT一周年,一图总结2023生成式AI里程碑大事件时间线
  • Python 接口测试response返回数据对比的方法
  • LainChain 原理解析:结合 RAG 技术提升大型语言模型能力
  • 6-6 堆排序 分数 10
  • 高翔《自动驾驶与机器人中的SLAM技术》第九、十章载入静态地图完成点云匹配重定位
  • 英语六级翻译
  • VMware配置Ubuntu虚拟机
  • Backtrader 文档学习-Platform Concepts
  • 策略模式(常用)
  • Express中使用Swagger
  • 【C++】单一职责模式
  • GPT4-隐者地址
  • 教师考编需要什么条件
  • 刘家窑中医医院鲁卫星主任:冬季守护心脑血管,为社区居民送去健康关爱
  • 专家级定位咨询:打造不可复制的市场地位
  • 为什么说代码注释是程序员必备的技能?
  • 日期——年月日星期时间封装和年月日时间封装
  • RK3568全国产化多网口板卡带poe供电,支持鸿蒙麒麟系统
  • UI卡顿问题
  • Linux操作系统的ECS云服务器上搭建WordPress网站教程