当前位置: 首页 > news >正文

推荐算法:HNSW【推荐出与用户搜索的类似的/用户感兴趣的商品】

HNSW算法概述

HNSW(Hierarchical Navigable Small Word)算法算是目前推荐领域里面常用的ANN(Approximate Nearest Neighbor)算法了。其目的就是在极大量的候选集当中如何快速地找到一个query最近邻的k个元素

要找到一个query的k个最近邻元素,一个朴素的思想就是我去计算这个query和所有的总量N 个候选元素的距离,然后选择其中的前k 个最小元素,这个经典算法的算法复杂度是O(Nlog(k)),显然这个算法复杂度实在是太高了,无法适用于实际的使用场景。

而要解决这个问题,可以有多种实现方法,这里所要说的HNSW算法就是目前比较常用的一种搜索算法,它算是其前作NSW算法的一个升级版本,但是两者的本质都是基于一个朴素的思路,就是通过图连接的方式给所有的N 个候选元素事先地定义好一个图连接关系,从而可以将前述的算法复杂度当中的N 的部分给减小掉,从而优化整体的检索效率

其整体的一个图结果可以用下图进行表达:

解决的问题做高效率相似性查找。推荐系统中,如何找到与用户query最相近的几个item,然后推荐出去【也就是推荐出与用户搜索的类似的/用户感兴趣的商品】

解决方法有:Annoy,KD-Tree, LSH, PQ,NSW, HNSW等。

近似最近邻搜索算法(Approximate Nearest Neighbor Search,ANNS)发展:近邻图(Proximity Graph)–> NSW --> Skip List --> HNSW

近似最近邻搜索算法(Approximate Nearest Neighbor Search,ANNS)

1. 近邻图(Proximity Graph)

近邻图(Proximity Graph): 最朴素的图算法

思路: 构建一张图, 每一个顶点连接着最近的 N 个顶点。 Target (红点)是待查询的向量。在搜索时, 选择任意一个顶点出发。 首先遍历它的友节点, 找到距离与 Target 最近的某一节点, 将其设置为起始节点, 再从它的友节点出发进行遍历, 反复迭代, 不断逼近, 最后找到与 Target 距离最近的节点时搜索结束。

存在的问题:

  1. 图中的K点无法被查询到。
  2. 如果要查找距离Target (红点)最近的topK个点, 而如果点之间无连线, 将影响查找效率。
  3. D点有这么多友节点吗? 增加了构造复杂度。谁是谁的友节点如何确定?
  4. 如果初始点选择地不好(比如很远),将进行多步查找。

2. NSW算法原理

NSW,即没有分层的可导航小世界的结构(Navigable-Small-World-Graph )。

针对上面的问题,解决办法:

  1. 某些点无法被查询到 -> 规定构图时所有节点必须有友节点。
  2. 相似点不相邻的问题 -> 规定构图时所有距离相近到一定程度的节点必须互为友节点。
  3. 关于某些点有过多友节点 -> 规定限制每个节点的友节点数量。
  4. 初始点选择地很远 -> 增加高速公路机制。

2.1 NSW构图算法

图中插入新节点时,通过随机存在的一个节点出发查找到距离新节点最近的m个节点(规定最多m个友节点,m由用户设置),连接新节点到这最近的m个节点。节点的友节点在新的节点插入的过程中会不断地被更新。

m=3(每个点在插入时找3个紧邻友点)。

第1次构造:图为空,随机插入A,初始点为A。图中只有A,故无法挑选友节点。插入B,B点只有A点可选,所以连接BA。

第2次构造:插入F,F只有A和B可以选,所以连接FA,FB。

第3次构造:插入C,C点只有A,B,F可选,连接CA,CB,CF。

第4次构造:插入E,从A,B,C,F任意一点出发,计算出发点与E的距离和出发点的所有“友节点”和E的距离,选出最近的一点作为新的出发点,如果选出的点就是出发点本身,那么看我们的m等于几,如果不够数,就继续找第二近的点或者第三近的点,本着不找重复点的原则,直到找到3个近点为止。找到了E的三个近点,连接EA,EC,EF。

第5次构造:插入D,与E点的插入一模一样,都是在“现成”的图中查找到3个最近的节点作为“友节点”,并做连接。

第6次构造:插入G,与E点的插入一模一样,都是在“现成”的图中查找到3个最近的节点作为“友节点”,并做连接。

在图构建的早期,很有可能构建出“高速公路”。

第n次构造:在这个图的基础上再插入6个点,这6个点有3个和E很近,有3个和A很近,那么距离E最近的3个点中没有A,距离A最近的3个点中也没有E,但因为A和E是构图早期添加的点,A和E有了连线,我们管这种连线叫“高速公路”,在查找时可以提高查找效率(当进入点为E,待查找距离A很近时,我们可以通过AE连线从E直接到达A,而不是一小步一小步分多次跳转到A)。

结论:一个点,越早插入就越容易形成与之相关的“高速公路”连接,越晚插入就越难形成与之相关的“高速公路”连接。

这个算法设计的妙处就在于扔掉德劳内三角构图法,改用“无脑添加”(NSW朴素插入算法),降低了构图算法时间复杂度的同时还带来了数量有限的“高速公路”,加速了查找。

2.2 NSW查找算法

NSW.png

图中的边有两个不同的目的:

  1. Short-range edges,用作贪婪搜索算法所需的近似 Delaunay 图。
  2. Long-range edges,用于贪婪搜索的对数缩放。负责构造图形的可导航小世界(NSW)属性。

优化查找:

  1. 建立一个废弃列表visitedSet,在一次查找任务中遍历过的点不再遍历。
  2. 建立一个动态列表result,把距离查找点最近的n个点存储在表中,并行地对这n个点进行同时计算“友节点”和待查找点的距离,在这些“友节点”中选择n个点与动态列表中的n个点进行并集操作,在并集中选出n个最近的友点,更新动态列表。

推荐算法:HNSW算法简介-CSDN博客

检索模型-粗排HNSW_hnsw模型-CSDN博客

http://www.lryc.cn/news/258139.html

相关文章:

  • C++ //例3.14 找出100~200间的全部素数。
  • 虚幻学习笔记11—C++结构体、枚举与蓝图的通信
  • 【android开发-19】android中内容提供者contentProvider用法讲解
  • 浅谈排序——快速排序(最常用的排序)
  • Springboot项目实现简单的文件服务器,实现文件上传+图片及文件回显
  • 5V低压步进电机驱动芯片GC6150,应用于摄像机,机器人 医疗器械等产品中。具有低噪声、低振动的特点
  • 3D Web轻量引擎HOOPS Communicator如何实现对大模型的渲染支持?
  • 『 Linux 』进程地址空间概念
  • PySpark大数据处理详细教程
  • 三(五)ts非基础类型(对象)
  • HeartBeat监控Redis状态
  • FairGuard无缝兼容小米澎湃OS、ColorOS 14 、鸿蒙4!
  • 【Copilot】Edge浏览器的copilot消失了怎么办
  • C++入门【6-C++ 修饰符类型】
  • STP笔记总结
  • Qt开发 之 记一次安装 Qt5.12.12 安卓环境的失败案例
  • 基于SpringBoot的就业信息管理系统设计与实现(源码+数据库+文档)
  • Java面试整理(四)Java IO流
  • 《安富莱嵌入式周报》第328期:自主微型机器人,火星探测器发射前失误故障分析,微软推出12周24期免费AI课程,炫酷3D LED点阵设计,MDK5.39发布
  • 产品经理在项目周期中扮演的角色Axure的安装与基本使用
  • Dockerfile创建镜像介绍
  • Android 滥用 SharedPreference 导致 ANR 问题
  • 虚幻商城 道具汇总
  • docker: Error response from daemon: failed to create shim task: OCI runtime
  • SpringBoot+线程池实现高频调用http接口并多线程解析json数据
  • java实现局域网内视频投屏播放(一)背景/需求
  • 【Spring】手写一个简易starter
  • Spring Cloud Alibaba实践 --Sentinel
  • 使用Mockjs模拟(假数据)接口(axios)
  • 【面试常考题目】五种方法解决“如何在n个无序数组中找出它的中位数(java)”问题