当前位置: 首页 > news >正文

【面试经典150 | 二叉树】对称二叉树

文章目录

  • 写在前面
  • Tag
  • 题目来源
  • 解题思路
    • 方法一:递归
    • 方法二:迭代
  • 写在最后

写在前面

本专栏专注于分析与讲解【面试经典150】算法,两到三天更新一篇文章,欢迎催更……

专栏内容以分析题目为主,并附带一些对于本题涉及到的数据结构等内容进行回顾与总结,文章结构大致如下,部分内容会有增删:

  • Tag:介绍本题牵涉到的知识点、数据结构;
  • 题目来源:贴上题目的链接,方便大家查找题目并完成练习;
  • 题目解读:复述题目(确保自己真的理解题目意思),并强调一些题目重点信息;
  • 解题思路:介绍一些解题思路,每种解题思路包括思路讲解、实现代码以及复杂度分析;
  • 知识回忆:针对今天介绍的题目中的重点内容、数据结构进行回顾总结。

Tag

【递归】【迭代】【二叉树】


题目来源

101. 对称二叉树


解题思路

如果一棵树的左子树与右子树镜像对称,那么这两棵树是对称的。

因此,问题转换为:两棵树在什么情况下是互为镜像的,找出使两棵树互为镜像的条件,根据条件即可结局对称问题。

镜像条件如下:

  • 两棵树的两个根节点具有相同的值;
  • 每棵树的右子树都要与另一棵树的左子树镜像对称。

同时满足以上两个条件即可判断出两棵树是对称的。

二叉树问题通常都有两种递归和迭代的解法。

方法一:递归

递归出口是什么?

递归出口即可以直接判断的情况,包括:

  • 两个节点都为空时,直接返回 true
  • 一个节点为空,另一个不为空,返回 false

如何往下递?

当前的两个节点表示的子树是否是对称的,取决于当前两节点的值以及左右子树是否对称。

只有当前两节点的值相等并且左右子树对称,这两个节点表示的子树才是对称的。

算法

实现一个判断两个节点 pq 表示的子树是否是对称的函数 check:

  • 如果 p = nullptr 并且 q = nullptr,直接返回 true
  • 如果 p ≠ nullptr 或者 q ≠ nullptr,直接返回 false
  • 最后 pq 表示的子树是否是对称与 p->val == q->val && check(p->left, q->right) && check(p->right, q->left) 一致,直接返回该表达式。

调用 check(root, root) 即得到最终答案。

复杂度分析

时间复杂度: O ( n ) O(n) O(n) n n n 为二叉树中节点的数量。

空间复杂度: O ( n ) O(n) O(n)

方法二:迭代

思路与算法

使用迭代解法需要用到队列。

首先我们引入一个队列,初始化时我们把根节点入队两次。每次提取两个节点并比较它们的值(队列中每两个连续的节点应该是相等的,而且它们的子树互为镜像),然后将两个节点的左右子节点按相反的顺序插入队列中。

当队列为空时,或者我们检测到树不对称,即从队列中取出两个不相等的连续节点时,该算法结束。

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:bool check(TreeNode* u, TreeNode *v) {queue<TreeNode*> q;q.push(u); q.push(v);while (!q.empty()) {u = q.front(); q.pop();v = q.front(); q.pop();if (!u && !v)continue;if (!u || !v ||(u->val != v->val))return false;q.push(u->left);q.push(v->right);q.push(u->right);q.push(v->left);}return true;}bool isSymmetric(TreeNode* root) {return check(root, root);}
};

复杂度分析

时间复杂度: O ( n ) O(n) O(n) n n n 为二叉树中节点的数量。

空间复杂度: O ( n ) O(n) O(n),因为二叉树中的节点最多入队、出队一次,因此渐进的时间复杂度为 O ( n ) O(n) O(n)


写在最后

如果文章内容有任何错误或者您对文章有任何疑问,欢迎私信博主或者在评论区指出 💬💬💬。

如果大家有更优的时间、空间复杂度方法,欢迎评论区交流。

最后,感谢您的阅读,如果感到有所收获的话可以给博主点一个 👍 哦。

http://www.lryc.cn/news/257399.html

相关文章:

  • 使用Git进行版本控制
  • 专业课145+总分440+东南大学920考研专业基础综合信号与系统数字电路经验分享
  • Leetcode每日一题
  • USB连接器
  • 软件工程之需求分析
  • URL提示不安全
  • JavaBean是什么
  • 202309-2
  • 数字图像处理(实践篇)二十 人脸特征提取
  • Python自动化:selenium常用方法总结
  • 『开源资讯』JimuReport积木报表 v1.6.6 版本发布—免费报表工具
  • 每天五分钟计算机视觉:使用1*1卷积层来改变输入层的通道数量
  • Java (JDK 21) 调用 OpenCV (4.8.0)
  • git 常用的使用方法
  • 使用Caliper对Fabric地basic链码进行性能测试
  • 一台是阿里云,一台是腾讯云,一台是华为云,一台是百度云等多种公有云混合安装K8S集群
  • 期末速成数据库极简版【查询】(3)
  • 人工智能_机器学习061_KKT条件公式理解_原理深度解析_松弛变量_不等式约束---人工智能工作笔记0101
  • 有关光伏电站绝缘阻抗异常排查分析-安科瑞 蒋静
  • 抓取真实浏览器设备指纹fingerprint写入cookie方案
  • 【华为OD题库-074】VLAN资源池-Java
  • 成都工业学院Web技术基础(WEB)实验一:HTML5排版标签使用
  • OpenAI承认ChatGPT变懒惰,正在修复该问题
  • 归并排序与自然归并排序
  • 22款奔驰GLS450升级HUD抬头显示 告别低头
  • 关于kotlin的属性委托,报错的,实际原因剖析
  • HarmonyOS4.0从零开始的开发教程11给您的应用添加弹窗
  • js 同步任务和异步任务
  • 【小白专用】Sql Server 连接Mysql 更新23.12.09
  • DIP——边缘提取与分割