当前位置: 首页 > news >正文

施密特正交

描述

给出一个向量组原始基,通过施密特正交化、单位化,构造出标准正交基。

输入

本题有多组测试数据。每组测试数据在第一行给出两个正整数t,n,表示有t个n维向量。随后t行每行给出n个实数表示一个向量。

输出

每行输出一个向量,用空格分隔每个分量。保留3位小数。

样例输入
3 3
0 1 1
1 1 0
1 0 1
样例输出
0.000 0.707 0.707
0.816 0.408 -0.408
0.577 -0.577 0.577
code
#include <stdio.h>
#include <stdlib.h>
#include <math.h>// 计算向量点积
double dotProduct(const double* v1, const double* v2, int n) {double result = 0.0;for (int i = 0; i < n; i++) {result += v1[i] * v2[i];}return result;
}// 计算向量长度
double vectorLength(const double* v, int n) {double result = 0.0;for (int i = 0; i < n; i++) {result += v[i] * v[i];}return sqrt(result);
}// 施密特正交化 该函数接收一个二维指针vectors,表示向量组,以及两个整数t和n,
//分别表示向量组中向量的个数和每个向量的维度。该函数实现施密特正交化的算法
void gramSchmidt(double** vectors, int t, int n) {for (int i = 0; i < t; i++) {for (int j = 0; j < i; j++) {double projection = dotProduct(vectors[i], vectors[j], n) / dotProduct(vectors[j], vectors[j], n); //projection 就是向量 vectors[i] 在向量 vectors[j] 上的投影长度,//它除以向量 vectors[j] 的长度的平方,就是公式中的分式部分,用于计算投影向量的系数。for (int k = 0; k < n; k++) {vectors[i][k] -= projection * vectors[j][k];}}}
}// 单位化向量
void normalize(double* v, int n) {double length = vectorLength(v, n);for (int i = 0; i < n; i++) {v[i] /= length;}
}int main() {int t, n;while (scanf("%d%d", &t, &n) == 2) {// 读入向量组double** vectors = (double**)malloc(t * sizeof(double*));for (int i = 0; i < t; i++) {vectors[i] = (double*)malloc(n * sizeof(double));for (int j = 0; j < n; j++) {scanf("%lf", &vectors[i][j]);}}// 施密特正交化gramSchmidt(vectors, t, n);// 单位化向量for (int i = 0; i < t; i++) {normalize(vectors[i], n);}// 输出结果for (int i = 0; i < t; i++) {for (int j = 0; j < n-1; j++) {printf("%.3f ", vectors[i][j]);}printf("%.3f",vectors[i][n-1]); printf("\n");}// 释放内存for (int i = 0; i < t; i++) {free(vectors[i]);}free(vectors);}return 0;
}
对样例解释(理解的的人可跳过)

Eg.对于vectors=

{1,1,1,1

1,-1,0,4

3,5,1,-1}

  1. i=0

j不存在

对于for(k=……)也不执行

vectors不变 仍为vectors=

{1,1,1,1

1,-1,0,4

3,5,1,-1}

  1. i=1

      Projection=4/4=1

      For(k=……)
    1. vectors[1][0]-=1*vectors[0][0](vectors[0][0]=1)

      1. vectors[1][0]变成0

    2. vectors[1][1]-=1*vectors[0][1](vectors[0][1]=1)

      1. vectors[1][1]变成-2

    3. vectors[1][2]-=1*vectors[0][2](vectors[0][2]=1)

      1. vectors[1][2]变成-1

    4. vectors[1][3]-=1*vectors[0][3](vectors[0][3]=1)

      1. vectors[1][3]变成3

    1. j=0

vectors=

{1,1,1,1

0,-2,-1,3

3,5,1,-1}

  1. i=2

      Projection=(3*1+5*1+1-1)/4=8/4=2

      For(k=……)
    1. vectors[2][0]-=2*vectors[0][0](vectors[0][0]=1)

      1. vectors[2][0]变成1

    2. vectors[2][1]-=2*vectors[0][1](vectors[0][1]=1)

      1. vectors[2][1]变成3

    3. vectors[2][2]-=2*vectors[0][2](vectors[0][2]=1)

      1. vectors[2][2]变成-1

    4. vectors[2][3]-=2*vectors[0][3](vectors[0][3]=1)

      1. vectors[2][3]变成-3

      对于vectors=

      {1,1,1,1

      0,-2,-1,3

      1,3,-1,-3}

     attention:在解这题时vectors[2][ ]不改变(起始vectors[2][ ]为3,5,1,-1)

      3*0-2*5-1*1-1*3=-14=1*0-2*3+(-1)*(-1)-3*(3)(点乘不变)

      Projection=(0-6+1-9)/14=-14/14=-1

      For(k=……)
    1. vectors[3][0]-=(-1)*vectors[1][0](vectors[1][0]=0)

      1. vectors[3][0]变成1

    2. vectors[3][1]-=(-1)*vectors[1][1](vectors[1][1]=-2)

      1. vectors[3][1]变成1

    3. vectors[3][2]-=(-1)*vectors[1][2](vectors[1][2]=-1)

      1. vectors[3][2]变成-2

    4. vectors[3][3]-=(-1)*vectors[1][3](vectors[1][3]=3)

      1. vectors[3][3]变成0

    1. j=0

    2. j=1

对于vectors=

{1,1,1,1

0,-2,-1,3

1,1,-2,0}

接下来就是单位化

http://www.lryc.cn/news/252272.html

相关文章:

  • 视频号小店怎么起量?实操详解!
  • 如何将unity项目托管到github(快速便捷)
  • ClickHouse(16)ClickHouse日志引擎Log详细解析
  • opencv项目开发实战--填补字母的空白
  • Wnmp本地搭建结合内网穿透实现远程访问本地Wnmp服务
  • C++ 红黑树的封装
  • MongoDB快速入门及其SpringBoot实战
  • Python网络爬虫练习
  • 《opencv实用探索·九》中值滤波简单理解
  • PC行内编辑
  • 鸿蒙开发:Stage模型开发-应用/组件级配置以及UIAbility组件初步使用【鸿蒙专栏-20】
  • Django回顾【五】
  • Python容器——字典
  • 基于Java SSM框架实现实现四六级英语报名系统项目【项目源码+论文说明】
  • 翻硬币(第四届蓝桥杯省赛C++B组)(java版)
  • 原生GPT本地及云端部署方式保姆级教程
  • Docker容器(一)概述
  • Facebook引流怎么做?写个脚本就好!
  • 自动化集成有哪些典型应用场景?
  • 探讨几种在CentOS 7上实现文件上传的方法
  • AWS EC2使用 instance profile 访问S3
  • python中函数式编程
  • Java_JDK8到JDK21各版本发行时间及重要特性
  • 03 数仓平台 Kafka
  • 2023年全国硕士研究生入学统一考试管理类专业学位联考逻辑试题——解析版
  • Matlab论文插图绘制模板第129期—函数网格曲面图
  • 无限移动的风景 css3 动画 鼠标移入暂停
  • Java基本数据类型、包装类及拆装箱详解
  • SIT2596,可替代LM2596,40V 输入 150KHz 3A 降压型电源转换器
  • python + mongodb使用入门