当前位置: 首页 > news >正文

ElasticSearch之cat anomaly detectors API

curl -X GET "https://localhost:9200/_cat/ml/anomaly_detectors?v=true&pretty" --cacert $ES_HOME/config/certs/http_ca.crt -u "elastic:ohCxPH=QBE+s5=*lo7F9"

执行结果输出如下:

curl -X GET "https://localhost:9200/_cat/ml/anomaly_detectors?v=true&pretty" --cacert $ES_HOME/config/certs/http_ca.crt -u "elastic:ohCxPH=QBE+s5=*lo7F9"
id state data.processed_records model.bytes model.memory_status forecasts.total buckets.count

查看帮助,命令如下:

curl -X GET "https://localhost:9200/_cat/ml/anomaly_detectors?v=true&help=true&pretty" --cacert $ES_HOME/config/certs/http_ca.crt -u "elastic:ohCxPH=QBE+s5=*lo7F9"

执行结果输出如下:

id                               |                                    | the job_id
state                            | s                                  | the job state
opened_time                      | ot                                 | the amount of time the job has been opened
assignment_explanation           | ae                                 | why the job is or is not assigned to a node
data.processed_records           | dpr,dataProcessedRecords           | number of processed records
data.processed_fields            | dpf,dataProcessedFields            | number of processed fields
data.input_bytes                 | dib,dataInputBytes                 | total input bytes
data.input_records               | dir,dataInputRecords               | total record count
data.input_fields                | dif,dataInputFields                | total field count
data.invalid_dates               | did,dataInvalidDates               | number of records with invalid dates
data.missing_fields              | dmf,dataMissingFields              | number of records with missing fields
data.out_of_order_timestamps     | doot,dataOutOfOrderTimestamps      | number of records handled out of order
data.empty_buckets               | deb,dataEmptyBuckets               | number of empty buckets
data.sparse_buckets              | dsb,dataSparseBuckets              | number of sparse buckets
data.buckets                     | db,dataBuckets                     | total bucket count
data.earliest_record             | der,dataEarliestRecord             | earliest record time
data.latest_record               | dlr,dataLatestRecord               | latest record time
data.last                        | dl,dataLast                        | last time data was seen
data.last_empty_bucket           | dleb,dataLastEmptyBucket           | last time an empty bucket occurred
data.last_sparse_bucket          | dlsb,dataLastSparseBucket          | last time a sparse bucket occurred
model.bytes                      | mb,modelBytes                      | model size
model.memory_status              | mms,modelMemoryStatus              | current memory status
model.bytes_exceeded             | mbe,modelBytesExceeded             | how much the model has exceeded the limit
model.memory_limit               | mml,modelMemoryLimit               | model memory limit
model.by_fields                  | mbf,modelByFields                  | count of 'by' fields
model.over_fields                | mof,modelOverFields                | count of 'over' fields
model.partition_fields           | mpf,modelPartitionFields           | count of 'partition' fields
model.bucket_allocation_failures | mbaf,modelBucketAllocationFailures | number of bucket allocation failures
model.categorization_status      | mcs,modelCategorizationStatus      | current categorization status
model.categorized_doc_count      | mcdc,modelCategorizedDocCount      | count of categorized documents
model.total_category_count       | mtcc,modelTotalCategoryCount       | count of categories
model.frequent_category_count    | mfcc,modelFrequentCategoryCount    | count of frequent categories
model.rare_category_count        | mrcc,modelRareCategoryCount        | count of rare categories
model.dead_category_count        | mdcc,modelDeadCategoryCount        | count of dead categories
model.failed_category_count      | mfcc,modelFailedCategoryCount      | count of failed categories
model.log_time                   | mlt,modelLogTime                   | when the model stats were gathered
model.timestamp                  | mt,modelTimestamp                  | the time of the last record when the model stats were gathered
forecasts.total                  | ft,forecastsTotal                  | total number of forecasts
forecasts.memory.min             | fmmin,forecastsMemoryMin           | minimum memory used by forecasts
forecasts.memory.max             | fmmax,forecastsMemoryMax           | maximum memory used by forecasts
forecasts.memory.avg             | fmavg,forecastsMemoryAvg           | average memory used by forecasts
forecasts.memory.total           | fmt,forecastsMemoryTotal           | total memory used by all forecasts
forecasts.records.min            | frmin,forecastsRecordsMin          | minimum record count for forecasts
forecasts.records.max            | frmax,forecastsRecordsMax          | maximum record count for forecasts
forecasts.records.avg            | fravg,forecastsRecordsAvg          | average record count for forecasts
forecasts.records.total          | frt,forecastsRecordsTotal          | total record count for all forecasts
forecasts.time.min               | ftmin,forecastsTimeMin             | minimum runtime for forecasts
forecasts.time.max               | ftmax,forecastsTimeMax             | maximum run time for forecasts
forecasts.time.avg               | ftavg,forecastsTimeAvg             | average runtime for all forecasts (milliseconds)
forecasts.time.total             | ftt,forecastsTimeTotal             | total runtime for all forecasts
node.id                          | ni,nodeId                          | id of the assigned node
node.name                        | nn,nodeName                        | name of the assigned node
node.ephemeral_id                | ne,nodeEphemeralId                 | ephemeral id of the assigned node
node.address                     | na,nodeAddress                     | network address of the assigned node
buckets.count                    | bc,bucketsCount                    | bucket count
buckets.time.total               | btt,bucketsTimeTotal               | total bucket processing time
buckets.time.min                 | btmin,bucketsTimeMin               | minimum bucket processing time
buckets.time.max                 | btmax,bucketsTimeMax               | maximum bucket processing time
buckets.time.exp_avg             | btea,bucketsTimeExpAvg             | exponential average bucket processing time (milliseconds)
buckets.time.exp_avg_hour        | bteah,bucketsTimeExpAvgHour        | exponential average bucket processing time by hour (milliseconds)

相关资料

  • cat anomaly detectors API
  • Post data to jobs API
  • API conventions
  • HTTP accept header
http://www.lryc.cn/news/246444.html

相关文章:

  • Luminar Neo1.16.0(ai智能图像处理)
  • ElasticSearch之cat aliases API
  • bash编程 数组和for循环的应用
  • Python基础:标准库概览
  • C#,《小白学程序》第三课:类class,类的数组及类数组的排序
  • 建筑结构健康监测系统和传统人工监测的区别
  • 二 使用GPIO的复用功能 利用USART 实现printf()
  • C#中的警告CS0120、CS0176、CS0183、CS0618、CS0649、CS8600、CS8601、CS8602、CS8604、CS8625及处理
  • js中声明变量的关键字(const,let,var)
  • Android13 launcher循环切页
  • Java学习路线第一篇:Java基础(2)
  • 网络工程师精华篇,50种网络故障及解决方法大集合
  • Unity播放网络视频
  • SCI一区级 | Matlab实现GWO-CNN-LSTM-selfAttention多变量多步时间序列预测
  • 线性分类器--图像表示
  • 车载通信架构 —— 传统车内通信网络FlexRay(较高速度高容错、较灵活拓扑结构)
  • 如何在Ubuntu的Linux系统中安装MySQL5.7数据库
  • 基于Hadoop的区块链海量数据存储的设计与实现
  • 运行时错误/缺陷到底是什么缺陷
  • 应用Web3.0的5种方法提升你的点击量
  • 计算机服务器中了mallox勒索病毒如何处理,mallox勒索病毒解密文件恢复
  • 408—电子笔记分享
  • 【每日一题】子数组的最小值之和
  • 【docker】docker总结
  • [英语学习][3][Word Power Made Easy]的精读与翻译优化
  • 使用UIActivityViewController分享图片,没有preview
  • linux安装终端连接工具Tabby
  • Linux telnet命令详解:通过TCP/IP网络连接与管理远程机器(附实例教程和注意事项)
  • linux 磁盘管理、分区管理常用命令
  • Milvus入门手册1.0