当前位置: 首页 > news >正文

SCI一区级 | Matlab实现GWO-CNN-LSTM-selfAttention多变量多步时间序列预测

SCI一区级 | Matlab实现GWO-CNN-LSTM-selfAttention多变量多步时间序列预测

目录

    • SCI一区级 | Matlab实现GWO-CNN-LSTM-selfAttention多变量多步时间序列预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现GWO-CNN-LSTM-selfAttention灰狼算法优化卷积长短期记忆神经网络融合自注意力机制多变量多步时间序列预测,灰狼算法优化学习率,卷积核大小,神经元个数,以最小MAPE为目标函数;
在这里插入图片描述

自注意力层 (Self-Attention):Self-Attention自注意力机制是一种用于模型关注输入序列中不同位置相关性的机制。它通过计算每个位置与其他位置之间的注意力权重,进而对输入序列进行加权求和。自注意力能够帮助模型在处理序列数据时,对不同位置的信息进行适当的加权,从而更好地捕捉序列中的关键信息。在时序预测任务中,自注意力机制可以用于对序列中不同时间步之间的相关性进行建模。

在这里插入图片描述
2.运行环境为Matlab2023a及以上,提供损失、RMSE迭代变化极坐标图;网络的特征可视化图;测试对比图;适应度曲线(若首轮精度最高,则适应度曲线为水平直线);

3.excel数据集(负荷数据集),输入多个特征,输出单个变量,考虑历史特征的影响,多变量多步时间序列预测(多步预测即预测下一天96个时间点),main.m为主程序,运行即可,所有文件放在一个文件夹;

在这里插入图片描述
4.命令窗口输出SSE、RMSE、MSE、MAE、MAPE、R2、r多指标评价,适用领域:

负荷预测、风速预测、光伏功率预测、发电功率预测、碳价预测等多种应用。
在这里插入图片描述

程序设计

  • 完整程序和数据获取方式1:同等价值程序兑换;
  • 完整程序和数据获取方式2:私信博主回复Matlab实现GWO-CNN-LSTM-selfAttention多变量多步时间序列预测获取。

%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
% 主循环
while l < Max_iterfor i = 1:size(Positions, 1)% 将超出搜索空间边界的搜索代理放回搜索空间内Flag4ub = Positions(i, :) > ub;Flag4lb = Positions(i, :) < lb;Positions(i, :) = (Positions(i, :) .* (~(Flag4ub + Flag4lb))) + ub .* Flag4ub + lb .* Flag4lb;% 计算每个搜索个体的目标函数值[fitness,Value,Net,Info] = fobj(Positions(i, :));% 更新Alpha、Beta和Delta的位置向量if fitness < Alpha_scoreAlpha_score = fitness;       % 更新Alpha的得分Alpha_pos = Positions(i, :); % 更新Alpha的位置向量bestPred = Value;bestNet = Net;bestInfo = Info;endif fitness > Alpha_score && fitness < Beta_scoreBeta_score = fitness;       % 更新Beta的得分Beta_pos = Positions(i, :); % 更新Beta的位置向量endif fitness > Alpha_score && fitness > Beta_score && fitness < Delta_scoreDelta_score = fitness;       % 更新Delta的得分Delta_pos = Positions(i, :); % 更新Delta的位置向量endenda = 2 - l * ((2) / Max_iter); % a从2线性减少到0% 更新搜索个体的位置向量for i = 1:size(Positions, 1)for j = 1:size(Positions, 2)r1 = rand(); % r1是[0,1]区间的随机数r2 = rand(); % r2是[0,1]区间的随机数A1 = 2 * a * r1 - a; % 参考文献中的公式(3.3)C1 = 2 * r2; % 参考文献中的公式(3.4)D_alpha = abs(C1 * Alpha_pos(j) - Positions(i, j)); % 参考文献中的公式(3.5)-part 1X1 = Alpha_pos(j) - A1 * D_alpha; % 参考文献中的公式(3.6)-part 1r1 = rand();r2 = rand();A2 = 2 * a * r1 - a; % 参考文献中的公式(3.3)C2 = 2 * r2; % 参考文献中的公式(3.4)D_beta = abs(C2 * Beta_pos(j) - Positions(i, j)); % 参考文献中的公式(3.5)-part 2X2 = Beta_pos(j) - A2 * D_beta; % 参考文献中的公式(3.6)-part 2r1 = rand();r2 = rand();

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

http://www.lryc.cn/news/246430.html

相关文章:

  • 线性分类器--图像表示
  • 车载通信架构 —— 传统车内通信网络FlexRay(较高速度高容错、较灵活拓扑结构)
  • 如何在Ubuntu的Linux系统中安装MySQL5.7数据库
  • 基于Hadoop的区块链海量数据存储的设计与实现
  • 运行时错误/缺陷到底是什么缺陷
  • 应用Web3.0的5种方法提升你的点击量
  • 计算机服务器中了mallox勒索病毒如何处理,mallox勒索病毒解密文件恢复
  • 408—电子笔记分享
  • 【每日一题】子数组的最小值之和
  • 【docker】docker总结
  • [英语学习][3][Word Power Made Easy]的精读与翻译优化
  • 使用UIActivityViewController分享图片,没有preview
  • linux安装终端连接工具Tabby
  • Linux telnet命令详解:通过TCP/IP网络连接与管理远程机器(附实例教程和注意事项)
  • linux 磁盘管理、分区管理常用命令
  • Milvus入门手册1.0
  • PCL 计算两点云之间的最小距离
  • 基于YOLOv5的视频计数 — 汽车计数实现
  • jetson nano 串口通信
  • Vue基础入门(三):Vue3的使用
  • 基于M估计样本一致性算法的点云平面拟合
  • 【VRTK】【VR开发】【Unity】8-可交互对象
  • Huggingface 超详细介绍
  • pycharm 怎么切换Anaconda简单粗暴
  • 笔记二十二、使用路由state进行传递参数
  • 2023 OI 总结
  • ESP32-Web-Server编程-HTML 基础
  • 【docker】docker安装与优化
  • https到底把什么加密了?
  • python爬虫防乱码方案