当前位置: 首页 > news >正文

Hands-on Machine Learning with Scikit-Learn,Keras TensorFlow

读书记录(缓慢更新)

目录

Part 1. The Fundamentals of Machine Learning

The Content of The Machine Learning Landscape

The Machine Learning Landscape


Part 1. The Fundamentals of Machine Learning

The Content of The Machine Learning Landscape

Part 1. The Fundamentals(fundament n.基础;臀部) of Machine Learning 机器学习的基础
1.The Machine Learning Landscape(n.景色;形势 v.对……做景观美化) 机器学习的前景
What Is Machine Learning? 什么是机器学习
Why Use Machine Learning? 为什么使用机器学习
Types of Machine Learning Systems 机器学习系统的类型
  Supervised/Unsupervised(supervise v.监督) Learning 监督/无监督学习
  Batch(n.一批 v.分批处理) and Online Learning 批处理和在线学习
  Instance-Based Versus(与) Model-Based Learning 基于实例与基于模型的学习
Main Challenges of Machine Learning 机器学习的主要挑战
  Insufficient(sufficient a.充足的) Quantity(n.数目;大量) of Training Data 训练数据不足
  Nonrepresentative(represent v.代表) Training Data  非代表性训练数据
  Poor-Quality Data  低质量数据
  Irrelevant(relevant a.相关的;正确的;适宜的;有价值的) Features  无关的特征
  Overfitting(overfit n.过拟合) the Training Data 过拟合训练数据
  Underfitting(underfit n.欠拟合) the Training Data 欠拟合训练数据
  Stepping(step n.迈步;脚步;梯级;台阶;步骤;措施;阶段;进程 v.跨步走;(短距离)移动;行走) Back 退一步? 
Testing and Validating(validate v.批准;证实;确认……有效) 测试和验证
  Hyperparameter(parameter n.界限;范围;参数;变量) Tuning(tune n.曲调;歌曲 v.调整;校音) and Model Selection 超参数调优和模型选择
  Data Mismatch(match n.比赛;对手;配偶;婚姻 v.比得上;使相配)  数据不匹配
Exercises

The Machine Learning Landscape

  With Early Release ebooks, you get books in their earliest form-the author's raw and unedited content as he or she writes--so youcan take advantage of these technologies long before the officialrelease of these titles. The following will be Chapter 1 in the finalrelease of the book.

  When most people hear “Machine Learning they picture a robot: a dependable butler or a deadly Terminator depending on who you ask. But Machine Learning is notjust a futuristic fantasy, it's already here. In fact, it has been around for decades insome specialized applications, such as Optical Character Recognition (OCR). But thefirst ML application that really became mainstream, improving the lives of hundredsof millions of people, took over the world back in the 1990s: it was the spam filterNot exactly a self-aware Skynet, but it does technically qualify as Machine Learning(it has actually learned so well that you seldom need to flag an email as spam anymore). It was followed by hundreds of Ml applications that now quietly power hun-dreds of products and features that you use regularly, from better recommendationsto voice search.

http://www.lryc.cn/news/246116.html

相关文章:

  • 242. 有效的字母异位词
  • TUP通信——与多个客户端同时通信
  • 基于helm的方式在k8s集群中部署gitlab - 备份恢复(二)
  • B树与B+树的对比
  • 关键路径-STL版/拓扑排序 关键路径【数据结构】
  • 最新AI创作系统ChatGPT系统运营源码,支持GPT-4图片对话能力,上传图片并识图理解对话,支持DALL-E3文生图
  • 小航助学题库蓝桥杯题库stem选拔赛(21年3月)(含题库教师学生账号)
  • [python]离线加载fetch_20newsgroups数据集
  • Python与设计模式--代理模式
  • ubuntu挂载磁盘,以及开机自动挂载磁盘
  • Jetpack Compose中适应性布局的新API
  • 小航助学题库蓝桥杯题库stem选拔赛(22年1月)(含题库教师学生账号)
  • 蓝桥杯第100 题 九宫幻方 DFS 全排列 C++ 解题思维
  • NOI / 1.10编程基础之简单排序 提问05:分数线划定 c语言 结构体
  • 再探Docker:从Docker基础到跨服务器部署
  • C# 使用PanGu分词
  • Termius 一款优秀的跨平台 SSH 客户端工具
  • 生命科学领域 - 新药从研发到上市全流程
  • 血的教训------入侵redis之利用python来破解redis密码
  • yolov8-pose 推理流程
  • 笔记十七、认识React的路由插件react-router-dom和基本使用
  • CleanMyMac X4.14.5Crack最新Mac电脑清理优化最佳应用
  • Linux shell单双引号区别
  • ES 8.x开始(docker-compose安装、kibana使用、java操作)
  • 有了倾斜摄影,如何搭建一座智慧城市?
  • 设计测试用例的具体方法总结
  • 计算机毕业设计|基于SpringBoot+MyBatis框架的仿天猫商城购物系统设计与实现
  • JAXB的XmlValue注解
  • Git版本管理(05) git仓库迁移(保留原来记录分支体系)
  • 科技与教育:未来教育的新趋势