当前位置: 首页 > news >正文

Linux下安装Foldseek并从蛋白质的PDB结构中获取 3Di Token 和 3Di Embedding

0. 说明:

Foldseek 是由韩国国立首尔大学 (Seoul National University) 的 Martin Steinegger (MMseqs2Linclust 的作者) 开发的一款用于快速地从大型蛋白质结构数据库中检索相似结构蛋白质的工具,可以用于计算两个蛋白之间的结构相似性,可以用于蛋白质结构比对,也可以与 MMseqs2Linclust 结合实现基于结构对蛋白质聚类。

本文的目的在于利用 Foldseek 将蛋白质的PDB结构转化为 3Di alphabet 表示的 3Di 序列,同时获取蛋白质蓄力的 3Di Embedding Matrix。

1. 下载和安装 Foldseek:

根据 github 上提供的安装教程(https://github.com/steineggerlab/foldseek),首先确定 Linux 的架构,然后根据相应的下载和安装命令进行 Foldseek 的下载和安装。

# Linux AVX2 build (check using: cat /proc/cpuinfo | grep avx2)
wget https://mmseqs.com/foldseek/foldseek-linux-avx2.tar.gz; tar xvzf foldseek-linux-avx2.tar.gz; export PATH=$(pwd)/foldseek/bin/:$PATH# Linux SSE2 build (check using: cat /proc/cpuinfo | grep sse2)
wget https://mmseqs.com/foldseek/foldseek-linux-sse2.tar.gz; tar xvzf foldseek-linux-sse2.tar.gz; export PATH=$(pwd)/foldseek/bin/:$PATH# Linux ARM64 build
wget https://mmseqs.com/foldseek/foldseek-linux-arm64.tar.gz; tar xvzf foldseek-linux-arm64.tar.gz; export PATH=$(pwd)/foldseek/bin/:$PATH# MacOS
wget https://mmseqs.com/foldseek/foldseek-osx-universal.tar.gz; tar xvzf foldseek-osx-universal.tar.gz; export PATH=$(pwd)/foldseek/bin/:$PATH# Conda installer (Linux and macOS)
conda install -c conda-forge -c bioconda foldseek

2. 利用 Foldseek 将PDB转化为3Di

foldseek 程序所在的目录下,运行:
命令:./foldseek structureto3didescriptor --help

usage: foldseek structureto3didescriptor <i:PDB|mmCIF[.gz]> ... <i:PDB|mmCIF[.gz]> <o:3didescriptor> [options]By Martin Steinegger <martin.steinegger@snu.ac.kr>
options: misc:                         --mask-bfactor-threshold FLOAT mask residues for seeding if b-factor < thr [0,100] [0.000]--file-include STR             Include file names based on this regex [.*]--file-exclude STR             Exclude file names based on this regex [^$]
common:                       --threads INT                  Number of CPU-cores used (all by default) [40]-v INT                         Verbosity level: 0: quiet, 1: +errors, 2: +warnings, 3: +info [3]
expert:                       --chain-name-mode INT          Add chain to name:0: auto1: always add[0]--write-mapping INT            write _mapping file containing mapping from internal id to taxonomic identifier [0]--coord-store-mode INT         Coordinate storage mode: 1: C-alpha as float2: C-alpha as difference (uint16_t) [2]--write-lookup INT             write .lookup file containing mapping from internal id, fasta id and file number [1]--tar-include STR              Include file names based on this regex [.*]--tar-exclude STR              Exclude file names based on this regex [^$]examples:Convert PDB/mmCIF/tar[.gz] files to a dbreferences:- van Kempen, M., Kim, S.S., Tumescheit, C., Mirdita, M., Lee, J., Gilchrist, C.L.M., Söding, J., and Steinegger, M. Fast and accurate protein structure search with Foldseek. Nature Biotechnology, doi:10.1038/s41587-023-01773-0 (2023)

从上述帮助文档的结果可以看出,将一个蛋白PDB转化为3Di,命令:
./foldseek structureto3didescriptor prot.pdb res_prot.3di --threads 1 (用一个线程将 prot.pdb 转化为 res_prot.3di)

结果示例:
将人类蛋白 A1IGU5.pdb 转化为 A1IGU5.3di,部分结果如下:
在这里插入图片描述

3. 从 3Di 结果中将 3Di Token 和 3Di Embedding 取出

import numpy as npdef deal3DiRes(threeDifile):with open(threeDifile) as inF:for line in inF:line = line.strip().split("\t")## 3Di Tokentoken_3di = line[-2].strip()## 3Di Embeddingmatrix_3di = np.array(line[-1].strip().split(","), dtype=float)matrix_3di_reshape = matrix_3di.reshape(-1,10) ## 因为每个氨基酸是用长度为 10 的向量来表示的,所以把最后一列分成 nx10 的矩阵即可。breakreturn token_3di, matrix_3di_reshapeif __name__ == "__main__":res = deal3DiRes(threeDifile="../VirusHumanProt3DiFiles/Human3Di/A1IGU5.3di")print(res[0]) ## 3Di 序列print(res[1]) ## 3Di matrix

A1IGU5.3di 的处理结果如下

DDDDDDDDDPDPPPPVVVVVVVLLVVLLVQLVVLLVVVLVVLVVLLVLLCCVVPQLLVLVVVDDPVLSCLLCPVSVLVSVLSVVLSVQLVVLVVPSVCNLLSNLVSLVVCLVSLLVRLLRLLLSLVVNVVSLVVQVVVVVSVVSQQVSQCVSPVVCPPVRSVSSSCSSVVVLVCPLVSLVSSLVSDDCPDPSNVSSVVSSVSSVVSNVSSVLSSLLSVLLVVFLPPDPDDPVVVVVPDDPVVVVLVVQLVVLVVCCVVVVDPADDDPLVVVLVVLLVVLLVVLVVQLVVLVVVLVVLVVVLVDQPLPDDPVPPDAPVPLVSVLSVCCSVPLSVVLSVLCCVQQNVLSVVLNSVSSSVVRLVVVLSSLSSLQVVQVVCCVVPVDDDPVSVVSNVSNVSSVVSSSVVSVVSSVVSVVSVVVSVVSVVVSVVVSVVVSVVSVVVSLVPHPCSPPDPVRVVVVVVVVVVVVVVVVVVVVVVVLVPDDFPDLDDDDVPCPVQVVVVCVVANLQFKKFQRAFDDDDDDQDDGDHGGQIWGFPACADPVRHNQWTWIDSSPDIGIDGPVRIDRRDDDPPVVNVCVVVPDDDDDDDDDDDDDDDDDDDDDPPFKKFFCDWDDDDDPQADTHHHRAIKDFPACAPPVRHNQWTFIDGPNDTHIDGSVRMDTDDDDDPDDDDDDD
[[ 2.629e-316  1.156e-316  2.629e-316 ...  1.482e-323 -1.661e+0012.872e+013][ 7.838e-001  6.043e-001  7.838e-001 ...  3.854e+000  1.000e+0006.931e-001][ 6.043e-001  1.280e-001  6.043e-001 ...  3.703e+000  1.000e+0006.931e-001]...[ 3.958e-001  3.127e-001 -1.000e+000 ...  3.815e+000 -1.000e+000-6.931e-001][ 3.945e-001  3.958e-001 -1.000e+000 ...  3.853e+000 -1.000e+000-6.931e-001][ 0.000e+000  0.000e+000  0.000e+000 ...  0.000e+000  0.000e+0000.000e+000]]

参考:

[1]. van Kempen M, Kim S, Tumescheit C, Mirdita M, Lee J, Gilchrist C, Söding J, and Steinegger M. Fast and accurate protein structure search with Foldseek. Nature Biotechnology, doi:10.1038/s41587-023-01773-0 (2023)
[2]. Barrio-Hernandez I, Yeo J, Jänes J, Mirdita M, Gilchrist LMC, Wein T, Varadi M, Velankar S, Beltrao P and Steinegger M. Clustering predicted structures at the scale of the known protein universe. Nature, doi:10.1038/s41586-023-06510-w (2023)
[3]. https://github.com/steineggerlab/foldseek

http://www.lryc.cn/news/242128.html

相关文章:

  • 单元测试-java.lang.NullPointerException
  • 机器学习数据集整理:图像、表格
  • Vue: Cannot find module @/xx/xx/xx.vue or its corresponding type declarations.
  • 怎样自动把网页截图发到微信群里
  • Netty实现websocket且实现url传参的两种方式(源码分析)
  • 深入理解C语言指针:基础概念、语法和实际应用
  • 百度云加速免费版下线,推荐几款目前仍旧免费的CDN
  • HarmonyOS(五)—— 认识页面和自定义组件生命周期
  • DevExpress WinForms TreeMap组件,用嵌套矩形可视化复杂分层数据
  • IO口速度影响了什么?
  • Verilog基础:时序调度中的竞争(一)
  • nginx 配置静态缓存全教程 (以及静态缓存文件没有生成)
  • 自己动手打包构建编译cri-dockerd
  • Self-Supervised Exploration via Disagreement论文笔记
  • 【网络奇幻之旅】那年我与区块链技术的邂逅
  • 1.5.1 git/svn日志格式规范
  • [autojs]ui线程中更新控件的值的问题
  • 机器视觉技术在现代汽车制造中的应用
  • 学习视频剪辑方法:AI智剪助力,批量处理短视频无忧
  • 振南技术干货集:制冷设备大型IoT监测项目研发纪实(3)
  • 1143. 最长公共子序列
  • EASYEXCEL(一)
  • 竞赛YOLOv7 目标检测网络解读
  • 第一类曲线积分@对弧长的曲线积分
  • 【TypeScript】常见数据结构与算法(二):链表
  • 原型模式 (Prototype Pattern)
  • 项目总结报告(案例模板)
  • C++ Qt QByteArray用法介绍
  • 蓝桥杯物联网竞赛_STM32L071_3_Oled显示
  • python-opencv轮廓检测(外轮廓检测和全部轮廓检测,计算轮廓面积和周长)