当前位置: 首页 > news >正文

【Pytorch】Visualization of Feature Maps(1)

在这里插入图片描述

学习参考来自

  • CNN可视化Convolutional Features
  • https://github.com/wmn7/ML_Practice/blob/master/2019_05_27/filter_visualizer.ipynb

文章目录

  • filter 的激活值


filter 的激活值

原理:找一张图片,使得某个 layer 的 filter 的激活值最大,这张图片就是能被这个 filter 所检测的对象。

来个案例,流程:

  1. 初始化一张图片, 56X56
  2. 使用预训练好的 VGG16 网络,固定网络参数;
  3. 若想可视化第 40 层 layer 的第 k 个 filter 的 conv, 我们设置 loss 函数为 (-1*神经元激活值);
  4. 梯度下降, 对初始图片进行更新;
  5. 对得到的图片X1.2, 得到新的图片,重复上面的步骤;

其中第五步比较关键,我们可以看到初始化的图片不是很大,只有56X56. 这是因为原文作者在实际做的时候发现,若初始图片较大,得到的特征的频率会较高,即没有现在这么好的显示效果。

import torch
from torch.autograd import Variable
from PIL import Image, ImageOps
import torchvision.transforms as transforms
import torchvision.models as modelsimport numpy as np
import cv2
from cv2 import resize
from matplotlib import pyplot as pltdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")"initialize input image"
sz = 56
img = np.uint(np.random.uniform(150, 180, (3, sz, sz))) / 255  # (3, 56, 56)
img = torch.from_numpy(img[None]).float().to(device)  # (1, 3, 56, 56)"pretrained model"
model_vgg16 = models.vgg16_bn(pretrained=True).features.to(device).eval()
# downloading /home/xxx/.cache/torch/hub/checkpoints/vgg16_bn-6c64b313.pth, 500M+
# print(model_vgg16)
# print(len(list(model_vgg16.children())))  # 44
# print(list(model_vgg16.children()))"get the filter's output of one layer"
# 使用hook来得到网络中间层的输出
class SaveFeatures():def __init__(self, module):self.hook = module.register_forward_hook(self.hook_fn)def hook_fn(self, module, input, output):self.features = output.clone()def close(self):self.hook.remove()layer = 42
activations = SaveFeatures(list(model_vgg16.children())[layer])"backpropagation, setting hyper-parameters"
lr = 0.1
opt_steps = 25 # 迭代次数
filters = 265 # layer 42 的第 265 个 filter,使其激活值最大
upscaling_steps = 13 # 图像放大次数
blur = 3
upscaling_factor = 1.2 # 放大倍率"preprocessing of datasets"
cnn_normalization_mean = torch.tensor([0.485, 0.456, 0.406]).view(-1, 1, 1).to(device)
cnn_normalization_std = torch.tensor([0.299, 0.224, 0.225]).view(-1, 1, 1).to(device)"gradient descent"
for epoch in range(upscaling_steps):  # scale the image up up_scaling_steps timesimg = (img - cnn_normalization_mean) / cnn_normalization_stdimg[img > 1] = 1img[img < 0] = 0print("Image Shape1:", img.shape)img_var = Variable(img, requires_grad=True)  # convert image to Variable that requires grad"optimizer"optimizer = torch.optim.Adam([img_var], lr=lr, weight_decay=1e-6)for n in range(opt_steps):optimizer.zero_grad()model_vgg16(img_var)  # forwardloss = -activations.features[0, filters].mean()  # max the activationsloss.backward()optimizer.step()"restore the image"print("Loss:", loss.cpu().detach().numpy())img = img_var * cnn_normalization_std + cnn_normalization_meanimg[img>1] = 1img[img<0] = 0img = img.data.cpu().numpy()[0].transpose(1,2,0)sz = int(upscaling_factor * sz)  # calculate new image sizeimg = cv2.resize(img, (sz, sz), interpolation=cv2.INTER_CUBIC)  # scale image upif blur is not None:img = cv2.blur(img, (blur, blur))  # blur image to reduce high frequency patternsprint("Image Shape2:", img.shape)img = torch.from_numpy(img.transpose(2, 0, 1)[None]).to(device)print("Image Shape3:", img.shape)print(str(epoch), ", Finished")print("="*10)activations.close()  # remove the hookimage = img.cpu().clone()
image = image.squeeze(0)
unloader = transforms.ToPILImage()image = unloader(image)
image = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)
cv2.imwrite("res1.jpg", image)
torch.cuda.empty_cache()"""
Image Shape1: torch.Size([1, 3, 56, 56])
Loss: -6.0634975
Image Shape2: (67, 67, 3)
Image Shape3: torch.Size([1, 3, 67, 67])
0 , Finished
==========
Image Shape1: torch.Size([1, 3, 67, 67])
Loss: -7.8898916
Image Shape2: (80, 80, 3)
Image Shape3: torch.Size([1, 3, 80, 80])
1 , Finished
==========
Image Shape1: torch.Size([1, 3, 80, 80])
Loss: -8.730318
Image Shape2: (96, 96, 3)
Image Shape3: torch.Size([1, 3, 96, 96])
2 , Finished
==========
Image Shape1: torch.Size([1, 3, 96, 96])
Loss: -9.697872
Image Shape2: (115, 115, 3)
Image Shape3: torch.Size([1, 3, 115, 115])
3 , Finished
==========
Image Shape1: torch.Size([1, 3, 115, 115])
Loss: -10.190881
Image Shape2: (138, 138, 3)
Image Shape3: torch.Size([1, 3, 138, 138])
4 , Finished
==========
Image Shape1: torch.Size([1, 3, 138, 138])
Loss: -10.315895
Image Shape2: (165, 165, 3)
Image Shape3: torch.Size([1, 3, 165, 165])
5 , Finished
==========
Image Shape1: torch.Size([1, 3, 165, 165])
Loss: -9.73861
Image Shape2: (198, 198, 3)
Image Shape3: torch.Size([1, 3, 198, 198])
6 , Finished
==========
Image Shape1: torch.Size([1, 3, 198, 198])
Loss: -9.503629
Image Shape2: (237, 237, 3)
Image Shape3: torch.Size([1, 3, 237, 237])
7 , Finished
==========
Image Shape1: torch.Size([1, 3, 237, 237])
Loss: -9.488493
Image Shape2: (284, 284, 3)
Image Shape3: torch.Size([1, 3, 284, 284])
8 , Finished
==========
Image Shape1: torch.Size([1, 3, 284, 284])
Loss: -9.100454
Image Shape2: (340, 340, 3)
Image Shape3: torch.Size([1, 3, 340, 340])
9 , Finished
==========
Image Shape1: torch.Size([1, 3, 340, 340])
Loss: -8.699549
Image Shape2: (408, 408, 3)
Image Shape3: torch.Size([1, 3, 408, 408])
10 , Finished
==========
Image Shape1: torch.Size([1, 3, 408, 408])
Loss: -8.90135
Image Shape2: (489, 489, 3)
Image Shape3: torch.Size([1, 3, 489, 489])
11 , Finished
==========
Image Shape1: torch.Size([1, 3, 489, 489])
Loss: -8.838546
Image Shape2: (586, 586, 3)
Image Shape3: torch.Size([1, 3, 586, 586])
12 , Finished
==========Process finished with exit code 0
"""

得到特征图

请添加图片描述
网上找个图片测试下,看响应是不是最大

测试图片

请添加图片描述

import torch
from torch.autograd import Variable
from PIL import Image, ImageOps
import torchvision.transforms as transforms
import torchvision.models as modelsimport numpy as np
import cv2
from cv2 import resize
from matplotlib import pyplot as pltdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")class SaveFeatures():def __init__(self, module):self.hook = module.register_forward_hook(self.hook_fn)def hook_fn(self, module, input, output):self.features = output.clone()def close(self):self.hook.remove()size = (224, 224)
picture = Image.open("./bird.jpg").convert("RGB")
picture = ImageOps.fit(picture, size, Image.ANTIALIAS)loader = transforms.ToTensor()
picture = loader(picture).to(device)
print(picture.shape)cnn_normalization_mean = torch.tensor([0.485, 0.456, 0.406]).view(-1, 1, 1).to(device)
cnn_normalization_std = torch.tensor([0.229, 0.224, 0.225]).view(-1, 1, 1).to(device)picture = (picture-cnn_normalization_mean) / cnn_normalization_stdmodel_vgg16 = models.vgg16_bn(pretrained=True).features.to(device).eval()
print(list(model_vgg16.children())[40])  # Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
print(list(model_vgg16.children())[41])  # BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
print(list(model_vgg16.children())[42])  # ReLU(inplace=True)layer = 42
filters = 265
activations = SaveFeatures(list(model_vgg16.children())[layer])with torch.no_grad():picture_var = Variable(picture[None])model_vgg16(picture_var)
activations.close()print(activations.features.shape)  # torch.Size([1, 512, 14, 14])# 画出每个 filter 的平均值
mean_act = [activations.features[0, i].mean().item() for i in range(activations.features.shape[1])]
plt.figure(figsize=(7,5))
act = plt.plot(mean_act, linewidth=2.)
extraticks = [filters]
ax = act[0].axes
ax.set_xlim(0, 500)
plt.axvline(x=filters, color="gray", linestyle="--")
ax.set_xlabel("feature map")
ax.set_ylabel("mane activation")
ax.set_xticks([0, 200, 400] + extraticks)
plt.show()"""
torch.Size([3, 224, 224])
Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
ReLU(inplace=True)
torch.Size([1, 512, 14, 14])
"""

请添加图片描述

可以看到,265 特征图对该输入的相应最高

总结:实测了其他 layer 和 filter,画出来的直方图中,对应的 filter 相应未必是最高的,不过也很高,可能找的待测图片并不是最贴合设定 layer 的某个 filter 的特征。

http://www.lryc.cn/news/241963.html

相关文章:

  • js修改浏览器地址栏里url的方法
  • 正则表达式(Java)(韩顺平笔记)
  • LLVM学习笔记(62)
  • 解决Spring Boot应用在Kubernetes上健康检查接口返回OUT_OF_SERVICE的问题
  • Java对象逃逸
  • Greenplum的数据库年龄检查处理
  • [HCIE] IPSec-VPN (IKE自动模式)
  • Qt/QML编程学习之心得:一个Qt工程的学习笔记(九)
  • c++ 课程笔记
  • ELK企业级日志分析平台——ES集群监控
  • Twincat使用:EtherCAT通信扫描硬件设备链接PLC变量
  • 手机APP-MCP走蓝牙无线遥控智能安全帽~执法记录仪~拍照录像,并可做基础的配置,例如修改服务器IP以及配置WiFi等
  • 网络互联与IP地址
  • Android设计模式--模板方法模式
  • 大语言模型——BERT和GPT的那些事儿
  • Docker 命令详解
  • ios打包,证书获取
  • linux(nginx安装配置,tomcat服务命令操作)
  • jQuery_03 dom对象和jQuery对象的互相转换
  • Mysql 中如何导入数据?
  • 深入了解前馈网络、CNN、RNN 和 Hugging Face 的 Transformer 技术!
  • Flink Table API 读写MySQL
  • Nginx 开源版安装
  • 『亚马逊云科技产品测评』活动征文|低成本搭建物联网服务器thingsboard
  • 【Pytorch】Visualization of Feature Maps(3)
  • 人工智能对我们的生活影响
  • Mysql存储引擎分类
  • 基于Python+TensorFlow+Django的交通标志识别系统
  • 【Java 进阶篇】Jedis:让Java与Redis轻松对话的利器
  • 【数据分享】我国12.5米分辨率的DEM地形数据(免费获取/地理坐标系)