当前位置: 首页 > news >正文

数字IC前端学习笔记:异步复位,同步释放

相关阅读

数字IC前端icon-default.png?t=N7T8https://blog.csdn.net/weixin_45791458/category_12173698.html?spm=1001.2014.3001.5482


异步复位

        异步复位是一种常见的复位方式,可以使电路进入一个可知的状态。但是不正确地使用异步复位会导致出现意想不到的错误,复位释放便是其中的一个重要问题,这将在后面进行讨论。

        异步复位是通过寄存器的异步复位端实现的,复位端一般是低电平有效,即当复位端为低电平时,寄存器输出被强制复位。

代码风格

        下面的代码显示了如何在Verilog代码中说明带有复位的寄存器。注意到复位信号的下降沿事件被加入了敏感列表。其实,异步复位是根据电平生效的,即当复位信号为低时复位。在这里写成下降沿的形式是因为,综合工具要求敏感列表中出现的信号如果有一个是边沿事件,则其他所有事件也必须是边沿敏感的,但这对于仿真工具是可以接受的,甚至仿真工具还可以在敏感列表中存在除了复位沿和时钟沿以外的其他信号事件,这对于综合工具也是不可接受的。

//综合与仿真工具都支持
module FlipFlop(input clk, rst_n, d, output reg q);always@(posedge clk, negedge rst_n)beginif(!rst_n)q <= 1'b0;elseq <= d;end
endmodule//综合工具不支持与仿真工具支持,其实复位效果和上面的代码一致(不要使用它)
module FlipFlop(input clk, rst_n, d, output reg q);always@(posedge clk, rst_n)beginif(!rst_n)q <= 1'b0;elseq <= d;end
endmodule//一个奇怪的例子,但仿真工具确实支持(不要使用它)
module FlipFlop(input clk, rst_n, d, output reg q);always@(posedge clk, rst_n, d)beginif(!rst_n)q <= 1'b0;elseq <= d;end
endmodule

异步复位的优势

        在进入这个话题前,我们先来看一下上面的第一段代码综合出的电路,如图1所示。可以看到综合工具可以直接从异步复位的Verilog描述中推断出一个带异步复位端的寄存器。

图1 异步复位综合出的寄存器

        我们再来看一下同步复位综合出的电路,如图2所示。顺便一提,上面异步复位的代码可以很轻松地改变为同步复位,只要把posedge rst_n从敏感列表中去除即可,如下所示。综合结果显示,异步复位其实就是将异步复位信号当做寄存器输入的一部分,而不是综合出一个有同步复位端的寄存器。对于那些时序上比较紧张的设计,在寄存器前的组合逻辑再插入异步复位的逻辑无法承受,使用异步复位能保证不会给reg2reg的时序路径带来负面影响。异步复位的另一个优点是无需时钟存在便可复位,这使得在时钟尚未启动时复位电路成为了可能。

//同步复位
module FlipFlop(input clk, rst_n, d, output reg q);always@(posedge clk)beginif(!rst_n)q <= 1'b0;elseq <= d;end
endmodule

图2  同步复位综合出的寄存器

异步复位的问题

        异步复位中也存在一定问题,因为复位信号的使能和释放都是异步的。不正确的复位释放,即复位沿过于接近时钟沿会导致寄存器输出现亚稳态(复位的生效不会导致出现亚稳态,因为复位是强制将输出拉低)。其实同步复位也有相似的问题,因为同步复位信号需要像其他输入信号一样满足建立时间、保持时间的要求,否则会在寄存器输出产生亚稳态。

Removal时间和Recovery时间

        与建立时间和保持时间类似,removal时间和recovery时间被用来描述复位信号的时序要求。如图3所示,removal时间指的是复位释放不能过于靠近时钟有效沿的后方,而Recovery指的是复位释放不能过于靠近有效沿的前方。这两种条件都可能造成输出的亚稳态,因为复位相当于内部信号的改变,这种改变过于靠近时钟沿会导致电路逻辑状态不定。

图3 复位信号释放的要求

复位同步器

         就像CDC(跨时钟域)问题一样,复位信号的释放同样也可以使用同步器与时钟沿进行同步,这就是“异步复位,同步释放”。

        以上结构的Verilog描述如下所示。

module reset_syn(input clk, rst_in, output reg rst_out);reg rst_r;always@(posedge clk, negedge rst_in)beginif(!rst_n){rst_out, rst_r} <= 2'b0;else{rst_out, rst_r} <= {rst_r, 1'b1};end
endmodule

         在同步了复位释放信号后,第一个寄存器的输出依然可能出现亚稳态,但这个不确定状态在传播到第二个寄存器输入前已经稳定(可能是1,也可能是0),即下一个时钟边沿在第二个寄存器输出不会出现亚稳态,这也意味着同步后复位释放信号会延迟输入的复位释放信号1至2个周期。

        甚至为了保险起见还可以使复位再延迟一段时间再释放,这样可以在最大程度上确保复位正常释放,如下所示。

`define count 16'hffff
module reset_syn(input clk, rst_in, output reg rst_out);reg rst_r, rst_cnt, rst_pre;always@(posedge clk, negedge rst_in)beginif(!rst_in){rst_pre, rst_r} <= 2'b0;else{rst_pre, rst_r} <= {rst_r, 1'b1};endalways@(posedge clk, negedge rst_pre)beginif(!rst_pre)      rst_cnt <= 0;else if(rst_cnt < `count)rst_cnt = rst_cnt + 1;endalways@(posedge clk, negedge rst_pre)beginif(!rst_pre)      rst_out <= 0;else if(rst_cnt == `count)rst_out <= 1'b1;elserst_out <= 1'b0;end    endmodule

http://www.lryc.cn/news/237422.html

相关文章:

  • Linux内核移植之网络驱动更改说明一
  • 邮件|gitpushgithub报错|Lombok注解
  • 【前端知识】Node——events模块的相关方法
  • 广州华锐互动VRAR | VR课件内容编辑器解决院校实践教学难题
  • Wireshark抓包:理解TCP三次握手和四次挥手过程
  • 网络工程师-HCIA网课视频学习
  • 【每日刷题——语音信号篇】
  • Linux进程通信——IPC、管道、FIFO的引入
  • 数理统计的基本概念(一)
  • clickhouse分布式之弹性扩缩容的故事
  • 数据结构--串的基本概念
  • 音视频流媒体之 IJKPlayer FFmpeg Android 编译
  • 记录一次较为完整的Jenkins发布流程
  • Virtual安装centos后,xshell连接centos 测试及遇到的坑
  • 【算法】最优乘车——bfs(stringsteam的实际应用,getline实际应用)
  • 『亚马逊云科技产品测评』活动征文|通过lightsail一键搭建Drupal VS 手动部署
  • 使用 VuePress 和 Vercel 打造个人技术博客:实现自动化部署
  • Re50:读论文 Large Language Models Struggle to Learn Long-Tail Knowledge
  • Spring IOC - Bean的生命周期之依赖注入
  • Android Termux安装MySQL,内网穿透实现公网远程访问
  • OpenCV快速入门:像素操作和图像变换
  • Django 路由配置(二)
  • 电子学会C/C++编程等级考试2022年06月(一级)真题解析
  • 【C++】使用std::vector()函数实现矩阵的加、减、点乘、点除等运算
  • 【python】直方图正则化详解和示例
  • c语言:矩阵交换
  • 【论文阅读】基于隐蔽带宽的汽车控制网络鲁棒认证(一)
  • 暖阳脚本_ 将Agent技术的灵活性引入RPA,清华等发布自动化智能体ProAgent
  • JUnit 单元自动化
  • Vue3 源码解读系列(十一)——插槽 slot