当前位置: 首页 > news >正文

【自然语言处理(NLP)实战】LSTM网络实现中文文本情感分析(手把手与教学超详细)

目录

引言:

1.所有文件展示:

1.中文停用词数据(hit_stopwords.txt)来源于:

2.其中data数据集为chinese_text_cnn-master.zip提取出的文件。点击链接进入github,点击Code、Download ZIP即可下载。

2.安装依赖库:

3.数据预处理(data_set.py):

train.txt-去除停用词后的训练集文件:

test.txt -去除停用词后的测试集文件:

4. 模型训练以及保存(main.py)

1.LSTM模型搭建:

2.main.py代价展示 :

 3.模型保存

4.训练结果 

5.LSTM模型测试(test.py) 

 1.测试结果:

2.测试结果:

6.完整代码展示:

1.data_set.py

2.mian.py

3.test.py 


引言:

在当今数字化时代,人们在社交媒体、评论平台以及各类在线交流中产生了海量的文本数据。这些数据蕴含着丰富的情感信息,从而成为了深入理解用户态度、市场趋势,甚至社会情绪的宝贵资源。自然语言处理(NLP)的发展为我们提供了强大的工具,使得对文本情感进行分析成为可能。在这个领域中,长短时记忆网络(LSTM)凭借其能够捕捉文本序列中长距离依赖关系的能力,成为了情感分析任务中的一项重要技术。

本篇博客将手把手地教你如何使用LSTM网络实现中文文本情感分析。我们将从数据预处理开始,逐步构建一个端到端的情感分析模型。通过详细的步骤和示例代码,深入了解如何处理中文文本数据、构建LSTM模型、进行训练和评估。

1.所有文件展示:

1.中文停用词数据(hit_stopwords.txt)来源于:

项目目录预览 - stopwords - GitCode

2.其中data数据集为chinese_text_cnn-master.zip提取出的文件。点击链接进入github,点击Code、Download ZIP即可下载。

2.安装依赖库:

pip install torch # 搭建LSTM模型
pip install gensim # 中文文本词向量转换
pip install numpy # 数据清洗、预处理
pip install pandas

3.数据预处理(data_set.py):

# -*- coding: utf-8 -*-
# @Time : 2023/11/15 10:52
# @Author :Muzi
# @File : data_set.py
# @Software: PyCharm
import pandas as pd
import jieba# 数据读取
def load_tsv(file_path):data = pd.read_csv(file_path, sep='\t')data_x = data.iloc[:, -1]data_y = data.iloc[:, 1]return data_x, data_ytrain_x, train_y = load_tsv("./data/train.tsv")
test_x, test_y = load_tsv("./data/test.tsv")
train_x=[list(jieba.cut(x)) for x in train_x]
test_x=[list(jieba.cut(x)) for x in test_x]with open('./hit_stopwords.txt','r',encoding='UTF8') as f:stop_words=[word.strip() for word in f.readlines()]print('Successfully')
def drop_stopword(datas):for data in datas:for word in data:if word in stop_words:data.remove(word)return datasdef save_data(datax,path):with open(path, 'w', encoding="UTF8") as f:for lines in datax:for i, line in enumerate(lines):f.write(str(line))# 如果不是最后一行,就添加一个逗号if i != len(lines) - 1:f.write(',')f.write('\n')if __name__ == '__main':train_x=drop_stopword(train_x)test_x=drop_stopword(test_x)save_data(train_x,'./train.txt')save_data(test_x,'./test.txt')print('Successfully')

train.txt-去除停用词后的训练集文件:

 

test.txt -去除停用词后的测试集文件:

4. 模型训练以及保存(main.py)

1.LSTM模型搭建:

不同的数据集应该有不同的分类标准,我这里用到的数据模型属于二分类问题

# 定义LSTM模型
class LSTMModel(nn.Module):def __init__(self, input_size, hidden_size, output_size):super(LSTMModel, self).__init__()self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)self.fc = nn.Linear(hidden_size, output_size)def forward(self, x):lstm_out, _ = self.lstm(x)output = self.fc(lstm_out[:, -1, :])  # 取序列的最后一个输出return output# 定义模型
input_size = word2vec_model.vector_size
hidden_size = 50  # 你可以根据需要调整隐藏层大小
output_size = 2  # 输出的大小,根据你的任务而定model = LSTMModel(input_size, hidden_size, output_size)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = torch.optim.Adam(model.parameters(), lr=0.0002)

2.main.py代价展示 :

# -*- coding: utf-8 -*-
# @Time : 2023/11/13 20:31
# @Author :Muzi
# @File : mian.py.py
# @Software: PyCharm
import pandas as pd
import torch
from torch import nn
import jieba
from gensim.models import Word2Vec
import numpy as np
from data_set import load_tsv
from torch.utils.data import DataLoader, TensorDataset# 数据读取
def load_txt(path):with open(path,'r',encoding='utf-8') as f:data=[[line.strip()] for line in f.readlines()]return datatrain_x=load_txt('train.txt')
test_x=load_txt('test.txt')
train=train_x+test_x
X_all=[i for x in train for i in x]_, train_y = load_tsv("./data/train.tsv")
_, test_y = load_tsv("./data/test.tsv")
# 训练Word2Vec模型
word2vec_model = Word2Vec(sentences=X_all, vector_size=100, window=5, min_count=1, workers=4)# 将文本转换为Word2Vec向量表示
def text_to_vector(text):vector = [word2vec_model.wv[word] for word in text if word in word2vec_model.wv]return sum(vector) / len(vector) if vector else [0] * word2vec_model.vector_sizeX_train_w2v = [[text_to_vector(text)] for line in train_x for text in line]
X_test_w2v = [[text_to_vector(text)] for line in test_x for text in line]# 将词向量转换为PyTorch张量
X_train_array = np.array(X_train_w2v, dtype=np.float32)
X_train_tensor = torch.Tensor(X_train_array)
X_test_array = np.array(X_test_w2v, dtype=np.float32)
X_test_tensor = torch.Tensor(X_test_array)
#使用DataLoader打包文件
train_dataset = TensorDataset(X_train_tensor, torch.LongTensor(train_y))
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_dataset = TensorDataset(X_test_tensor,torch.LongTensor(test_y))
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=True)
# 定义LSTM模型
class LSTMModel(nn.Module):def __init__(self, input_size, hidden_size, output_size):super(LSTMModel, self).__init__()self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)self.fc = nn.Linear(hidden_size, output_size)def forward(self, x):lstm_out, _ = self.lstm(x)output = self.fc(lstm_out[:, -1, :])  # 取序列的最后一个输出return output# 定义模型
input_size = word2vec_model.vector_size
hidden_size = 50  # 你可以根据需要调整隐藏层大小
output_size = 2  # 输出的大小,根据你的任务而定model = LSTMModel(input_size, hidden_size, output_size)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = torch.optim.Adam(model.parameters(), lr=0.0002)if __name__ == "__main__":# 训练模型num_epochs = 10log_interval = 100  # 每隔100个批次输出一次日志loss_min=100for epoch in range(num_epochs):model.train()for batch_idx, (data, target) in enumerate(train_loader):outputs = model(data)loss = criterion(outputs, target)optimizer.zero_grad()loss.backward()optimizer.step()if batch_idx % log_interval == 0:print('Epoch [{}/{}], Batch [{}/{}], Loss: {:.4f}'.format(epoch + 1, num_epochs, batch_idx, len(train_loader), loss.item()))# 保存最佳模型if loss.item()<loss_min:loss_min=loss.item()torch.save(model, 'model.pth')# 模型评估with torch.no_grad():model.eval()correct = 0total = 0for data, target in test_loader:outputs = model(data)_, predicted = torch.max(outputs.data, 1)total += target.size(0)correct += (predicted == target).sum().item()accuracy = correct / totalprint('Test Accuracy: {:.2%}'.format(accuracy))

 3.模型保存

 # 保存最佳模型if loss.item()<loss_min:loss_min=loss.item()torch.save(model, 'model.pth')

4.训练结果 

5.LSTM模型测试(test.py) 

# -*- coding: utf-8 -*-
# @Time : 2023/11/15 15:53
# @Author :Muzi
# @File : test.py.py
# @Software: PyCharm
import torch
import jieba
from torch import nn
from gensim.models import Word2Vec
import numpy as npclass LSTMModel(nn.Module):def __init__(self, input_size, hidden_size, output_size):super(LSTMModel, self).__init__()self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)self.fc = nn.Linear(hidden_size, output_size)def forward(self, x):lstm_out, _ = self.lstm(x)output = self.fc(lstm_out[:, -1, :])  # 取序列的最后一个输出return output# 数据读取
def load_txt(path):with open(path,'r',encoding='utf-8') as f:data=[[line.strip()] for line in f.readlines()]return data#去停用词
def drop_stopword(datas):# 假设你有一个函数用于预处理文本数据with open('./hit_stopwords.txt', 'r', encoding='UTF8') as f:stop_words = [word.strip() for word in f.readlines()]datas=[x for x in datas if x not in stop_words]return datasdef preprocess_text(text):text=list(jieba.cut(text))text=drop_stopword(text)return text# 将文本转换为Word2Vec向量表示
def text_to_vector(text):train_x = load_txt('train.txt')test_x = load_txt('test.txt')train = train_x + test_xX_all = [i for x in train for i in x]# 训练Word2Vec模型word2vec_model = Word2Vec(sentences=X_all, vector_size=100, window=5, min_count=1, workers=4)vector = [word2vec_model.wv[word] for word in text if word in word2vec_model.wv]return sum(vector) / len(vector) if vector else [0] * word2vec_model.vector_sizeif __name__ == '__main__':# input_text = "这个车完全就是垃圾,又热又耗油"input_text = "这个车我开了好几年,还是不错的"label = {1: "正面情绪", 0: "负面情绪"}model = torch.load('model.pth')# 预处理输入数据input_data = preprocess_text(input_text)# 确保输入词向量与模型维度和数据类型相同input_data=[[text_to_vector(input_data)]]input_arry= np.array(input_data, dtype=np.float32)input_tensor = torch.Tensor(input_arry)# 将输入数据传入模型with torch.no_grad():output = model(input_tensor)predicted_class = label[torch.argmax(output).item()]print(f"predicted_text:{input_text}")print(f"模型预测的类别: {predicted_class}")

 1.测试结果:

2.测试结果:

6.完整代码展示:

1.data_set.py

import pandas as pd
import jieba# 数据读取
def load_tsv(file_path):data = pd.read_csv(file_path, sep='\t')data_x = data.iloc[:, -1]data_y = data.iloc[:, 1]return data_x, data_ywith open('./hit_stopwords.txt','r',encoding='UTF8') as f:stop_words=[word.strip() for word in f.readlines()]print('Successfully')
def drop_stopword(datas):for data in datas:for word in data:if word in stop_words:data.remove(word)return datasdef save_data(datax,path):with open(path, 'w', encoding="UTF8") as f:for lines in datax:for i, line in enumerate(lines):f.write(str(line))# 如果不是最后一行,就添加一个逗号if i != len(lines) - 1:f.write(',')f.write('\n')if __name__ == '__main':train_x, train_y = load_tsv("./data/train.tsv")test_x, test_y = load_tsv("./data/test.tsv")train_x = [list(jieba.cut(x)) for x in train_x]test_x = [list(jieba.cut(x)) for x in test_x]train_x=drop_stopword(train_x)test_x=drop_stopword(test_x)save_data(train_x,'./train.txt')save_data(test_x,'./test.txt')print('Successfully')

2.mian.py

import pandas as pd
import torch
from torch import nn
import jieba
from gensim.models import Word2Vec
import numpy as np
from data_set import load_tsv
from torch.utils.data import DataLoader, TensorDataset# 数据读取
def load_txt(path):with open(path,'r',encoding='utf-8') as f:data=[[line.strip()] for line in f.readlines()]return datatrain_x=load_txt('train.txt')
test_x=load_txt('test.txt')
train=train_x+test_x
X_all=[i for x in train for i in x]_, train_y = load_tsv("./data/train.tsv")
_, test_y = load_tsv("./data/test.tsv")
# 训练Word2Vec模型
word2vec_model = Word2Vec(sentences=X_all, vector_size=100, window=5, min_count=1, workers=4)# 将文本转换为Word2Vec向量表示
def text_to_vector(text):vector = [word2vec_model.wv[word] for word in text if word in word2vec_model.wv]return sum(vector) / len(vector) if vector else [0] * word2vec_model.vector_sizeX_train_w2v = [[text_to_vector(text)] for line in train_x for text in line]
X_test_w2v = [[text_to_vector(text)] for line in test_x for text in line]# 将词向量转换为PyTorch张量
X_train_array = np.array(X_train_w2v, dtype=np.float32)
X_train_tensor = torch.Tensor(X_train_array)
X_test_array = np.array(X_test_w2v, dtype=np.float32)
X_test_tensor = torch.Tensor(X_test_array)
#使用DataLoader打包文件
train_dataset = TensorDataset(X_train_tensor, torch.LongTensor(train_y))
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_dataset = TensorDataset(X_test_tensor,torch.LongTensor(test_y))
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=True)
# 定义LSTM模型
class LSTMModel(nn.Module):def __init__(self, input_size, hidden_size, output_size):super(LSTMModel, self).__init__()self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)self.fc = nn.Linear(hidden_size, output_size)def forward(self, x):lstm_out, _ = self.lstm(x)output = self.fc(lstm_out[:, -1, :])  # 取序列的最后一个输出return output# 定义模型
input_size = word2vec_model.vector_size
hidden_size = 50  # 你可以根据需要调整隐藏层大小
output_size = 2  # 输出的大小,根据你的任务而定model = LSTMModel(input_size, hidden_size, output_size)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = torch.optim.Adam(model.parameters(), lr=0.0002)if __name__ == "__main__":# 训练模型num_epochs = 10log_interval = 100  # 每隔100个批次输出一次日志loss_min=100for epoch in range(num_epochs):model.train()for batch_idx, (data, target) in enumerate(train_loader):outputs = model(data)loss = criterion(outputs, target)optimizer.zero_grad()loss.backward()optimizer.step()if batch_idx % log_interval == 0:print('Epoch [{}/{}], Batch [{}/{}], Loss: {:.4f}'.format(epoch + 1, num_epochs, batch_idx, len(train_loader), loss.item()))# 保存最佳模型if loss.item()<loss_min:loss_min=loss.item()torch.save(model, 'model.pth')# 模型评估with torch.no_grad():model.eval()correct = 0total = 0for data, target in test_loader:outputs = model(data)_, predicted = torch.max(outputs.data, 1)total += target.size(0)correct += (predicted == target).sum().item()accuracy = correct / totalprint('Test Accuracy: {:.2%}'.format(accuracy))

3.test.py 

import torch
import jieba
from torch import nn
from gensim.models import Word2Vec
import numpy as npclass LSTMModel(nn.Module):def __init__(self, input_size, hidden_size, output_size):super(LSTMModel, self).__init__()self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)self.fc = nn.Linear(hidden_size, output_size)def forward(self, x):lstm_out, _ = self.lstm(x)output = self.fc(lstm_out[:, -1, :])  # 取序列的最后一个输出return output# 数据读取
def load_txt(path):with open(path,'r',encoding='utf-8') as f:data=[[line.strip()] for line in f.readlines()]return data#去停用词
def drop_stopword(datas):# 假设你有一个函数用于预处理文本数据with open('./hit_stopwords.txt', 'r', encoding='UTF8') as f:stop_words = [word.strip() for word in f.readlines()]datas=[x for x in datas if x not in stop_words]return datasdef preprocess_text(text):text=list(jieba.cut(text))text=drop_stopword(text)return text# 将文本转换为Word2Vec向量表示
def text_to_vector(text):train_x = load_txt('train.txt')test_x = load_txt('test.txt')train = train_x + test_xX_all = [i for x in train for i in x]# 训练Word2Vec模型word2vec_model = Word2Vec(sentences=X_all, vector_size=100, window=5, min_count=1, workers=4)vector = [word2vec_model.wv[word] for word in text if word in word2vec_model.wv]return sum(vector) / len(vector) if vector else [0] * word2vec_model.vector_sizeif __name__ == '__main__':input_text = "这个车完全就是垃圾,又热又耗油"# input_text = "这个车我开了好几年,还是不错的"label = {1: "正面情绪", 0: "负面情绪"}model = torch.load('model.pth')# 预处理输入数据input_data = preprocess_text(input_text)# 确保输入词向量与模型维度和数据类型相同input_data=[[text_to_vector(input_data)]]input_arry= np.array(input_data, dtype=np.float32)input_tensor = torch.Tensor(input_arry)# 将输入数据传入模型with torch.no_grad():output = model(input_tensor)# 这里只一个简单的示例predicted_class = label[torch.argmax(output).item()]print(f"predicted_text:{input_text}")print(f"模型预测的类别: {predicted_class}")

http://www.lryc.cn/news/234938.html

相关文章:

  • 迭代新品 | 第四代可燃气体监测仪,守护燃气管网安全快人一步
  • 【教3妹学编程-java基础6】详解父子类变量、代码块、构造函数执行顺序
  • 深度学习中文汉字识别 计算机竞赛
  • 从零开始 通义千问大模型本地化到阿里云通义千问API调用
  • Linux(3):Linux 的文件权限与目录配置
  • Linux进程——exec族函数、exec族函数与fork函数的配合
  • 客户端缓存技术
  • Leetcode -2
  • 使用 DFS 轻松求解数独难题(C++ 的一个简单实现)
  • 【SQL server】 表结构的约束和维护
  • 竞赛 题目:基于大数据的用户画像分析系统 数据分析 开题
  • Vue3-ref、reactive函数的watch
  • 【智能家居项目】FreeRTOS版本——多任务系统中使用DHT11 | 获取SNTP服务器时间 | 重新设计功能框架
  • Power BI Desktop数据可视化图表
  • 鸿蒙APP外包开发需要注意的问题
  • Redis 19 事务
  • Fabric多机部署启动节点与合约部署
  • WordPress主题WoodMart v7.3.2 WooCommerce主题和谐汉化版下载
  • Java 高等院校分析与推荐系统
  • 【JVM】Java虚拟机
  • 业务架构、技术架构、项目管理的有机结合
  • 拜耳阵列(Bayer Pattern)以及常见彩色滤波矩阵(CFA)
  • 【信息安全】浅谈IDOR越权漏洞的原理、危害和防范:直接对象引用导致的越权行为
  • uni-app 蓝牙打印, CPCL指令集使用
  • vue-组件通信(二)
  • 2023年【危险化学品经营单位安全管理人员】考试题及危险化学品经营单位安全管理人员模拟试题
  • Uni-App常用事件
  • 【笔记 Pytorch】稀疏矩阵、scipy.sparse模块的使用
  • C#学习相关系列之Linq常用方法---排序(一)
  • Android Proguard混淆