当前位置: 首页 > news >正文

前端算法面试之堆排序-每日一练

如果对前端八股文感兴趣,可以留意公重号:码农补给站,总有你要的干货。

今天分享一个非常热门的算法--堆排序。堆的运用非常的广泛,例如,Python中的heapq模块提供了堆排序算法,可以用于实现优先队列;Java中的PriorityQueue类实现了堆队列,可以用于实现优先级任务队列;C++中的优先队列容器适配器提供了基于堆的优先队列实现。

还有前端开发特别熟悉的React框架中也用到了,其中使用堆来管理组件的渲染优先级。在React中,组件的渲染优先级被抽象为一种堆结构,称为“Fiber堆”。Fiber堆中的每个节点代表一个组件,组件的优先级越高,在渲染时越优先。

什么是堆呢?

堆分为大根堆和小根堆,大根堆的每个结点的值都大于等于其子结点的值,即该结点是该子树中的最大值。小根堆的每个结点的值都小于等于其子结点的值,即该结点是该子树中的最小值。

他们都是一种特殊的完全二叉树,物理存储结构一般是一个连续的线性数组。并且节点的下标和左右子节点的下标之间存在一定的关系。假设节点的下标为 i,那么它的左子节点的下标为 2i,右子节点的下标为 2i + 1。相反地,如果一个节点的下标为 j,那么它的父节点的下标为 j/2(向下取整)。

那如何利用堆进行排序呢

以大根堆为例,就两步,建堆和堆化。

第一步先建堆,然后将堆顶和数组的最后一位更换位置,数组的最后一个位置就是最大值了。堆的大小减一。

第二步,再调整堆,使其再次满足大根堆的定义。

重复上面两步,直到堆的大小为1。

下面用代码实现这两个过程

建堆

 
class Heap {constructor(data) {this.data = data;}build() {for (let i = 2; i < this.data.length; i++) {this.heapfyTop(i);}}heapfyTop(n) {while (n > 1 && this.data[n] > this.data[Math.floor(n / 2)]) {this.swap(n, Math.floor(n / 2));n = Math.floor(n / 2);}}swap(index1, index2) {const temp = this.data[index1];this.data[index1] = this.data[index2];this.data[index2] = temp;}
}

建堆有两种方法,这里先讲第一种。

建堆的过程有点像插入排序,假设第一个元素已经是一个大根堆,从第二个节点开始往后遍历,每个元素都往前面的大根堆中插入。直到遍历完整个数组的元素。完整的大根堆就建好了。

假设往大根堆中插入元素a,先将元素a放到数组的最后一个位置,然后比较a元素和其父元素的大小,如果大于父元素,就将两个元素的位置更换。这样a元素就有了新的父元素。然后继续比较a 元素和其父元素的大小。直到a元素小于等于父元素,或者a元素变成了大根堆的堆顶。

这个比较的过程,就是大根堆堆化的过程

上面代码中,build函数作用是从数组的第二个元素开始往后遍历,每遍历一个元素,就调用一次heapfyTop 函数。heapfyTop 函数的作用是调整大根堆。遍历完整个数组,堆也就建好了。

数组元素从下标 1 开始

测试代码

 
const data = [-1, 21, 33, 5, 42, 123, 54, 65, 23, 33, 55];
const heap = new Heap(data);heap.build();console.log(heap.data);
// [
//   -1, 123, 55, 65, 33,
//   42,   5, 54, 21, 23,
//   33
// ]

新建一个 Heap 类,然后调用 build 方法,并且将堆的内容打印出来。打印数组确实满足大根堆定义,没有问题。

堆排序

 
class Heap {//省略其他代码sort() {this.build2(); // 构建大顶堆let len = this.data.length - 1; // 数组长度减1,因为堆排序是从下标1开始while (len > 1) { // 当堆长度大于1时,继续排序this.swap(1, len); // 交换堆顶元素与堆尾元素len--; // 减小堆长度this.heapfyBelow(1, len); // 对新的堆顶元素进行调整}}heapfyBelow(n, end) { // 对下标为n的元素进行调整,使其满足大顶堆的性质,end为调整范围的上界// 是否是叶子节点while (n * 2 <= end) {let maxIndex = n; // 假设当前结点是最大值// 如果有左孩子,且左孩子的值比当前结点大,则将maxIndex更新为左孩子的下标if (n * 2 <= end && this.data[maxIndex] < this.data[n * 2]) maxIndex = n * 2;// 如果有右孩子,且右孩子的值比当前结点大,则将maxIndex更新为右孩子的下标if (n * 2 + 1 <= end && this.data[maxIndex] < this.data[n * 2 + 1]) maxIndex = n * 2 + 1;// 如果maxIndex没有发生变化,说明当前结点的值已经是最大值,调整结束if (maxIndex == n) break;// 否则,交换当前结点与maxIndex指向的结点this.swap(n, maxIndex);n = maxIndex; // 更新当前结点为新的maxIndex}}}

将堆顶元素和最后一个元素更换位置之后,堆的大小减一,并且需要重新调整堆的大小,所以代码中 len--,并且调用了this.heapfyBelow(1, len)。这也是一个堆调整的代码,与之前不同的是,这个代码是从上往下调整堆。不断地比较当前元素和子元素,如果有子元素比当前元素还大的,就更换位置。直到遍历到叶子节点,或者没有比当前元素更大的子节点。

为了方便调用者,sort 函数中直接调用了 build 函数,完成建堆的步骤。

测试代码

 
const data = [-1, 21, 33, 5, 42, 123, 54, 65, 23, 33, 55];
const heap = new Heap(data);
heap.sort();
console.log(heap.data);
// [
//    -1,  5, 21, 23, 33,
//    33, 42, 54, 55, 65,
//   123
// ]

打印的数组有序,代码正确

完整代码

 
class Heap {constructor(data) {this.data = data;}build() {for (let i = 2; i < this.data.length; i++) {this.heapfyTop(i);}}sort() {this.build2();let len = this.data.length - 1;while (len > 1) {this.swap(1, len);len--;this.heapfyBelow(1, len);}}heapfyBelow(n, end) {// 是否是叶子节点while (n * 2 <= end) {let maxIndex = n;// 是否有左孩子if (n * 2 <= end && this.data[maxIndex] < this.data[n * 2]) maxIndex = n * 2;// 是否有右孩子if (n * 2 + 1 <= end && this.data[maxIndex] < this.data[n * 2 + 1]) maxIndex = n * 2 + 1;if (maxIndex == n) break;this.swap(n, maxIndex);n = maxIndex;}}heapfyTop(n) {while (n > 1 && this.data[n] > this.data[Math.floor(n / 2)]) {this.swap(n, Math.floor(n / 2));n = Math.floor(n / 2);}}swap(index1, index2) {const temp = this.data[index1];this.data[index1] = this.data[index2];this.data[index2] = temp;}
}const data = [-1, 21, 33, 5, 42, 123, 54, 65, 23, 33, 55];
const heap = new Heap(data);heap.sort();console.log(heap.data);

这是堆排序的完整代码,大家可以直接 copy 下来在本地跑一跑

总结

这篇文章分享了堆排序的概念讲解以及 JS 代码实现。堆排序是一种高效的排序算法,利用堆的特性进行排序。它的时间复杂度为O(nlogn),通过建堆和堆化的过程,可以将一个无序的数组转化为有序的数组。堆排序在实际应用中有广泛的应用,特别是在需要维护优先级队列的场景中非常有用。

下篇文章来分享建堆的另一种方式,以及堆的元素如何删除,并且分析堆排序的时间复杂度

作者:慢功夫
链接:https://juejin.cn/post/7300779513910132747
来源:稀土掘金
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

http://www.lryc.cn/news/234754.html

相关文章:

  • C++之set/multise容器
  • 本地部署AutoGPT
  • ProtocolBuffers(protobuf)详解
  • HTTP 到 HTTPS 再到 HSTS 的转变
  • 清华学霸告诉你:如何自学人工智能?
  • Ubuntu 安装VMware Tools选项显示灰色,如何安装VMware Tools
  • SpringBoot 2.x 实战仿B站高性能后端项目
  • vscode文件夹折叠问题
  • 4-flask-cbv源码、Jinja2模板、请求响应、flask中的session、flask项目参考
  • 2.Pandas数据预处理
  • C# IEnumerable<T>介绍
  • 九洲
  • 基于Genio 700 (MT8390)芯片的AR智能眼镜方案
  • 锐捷OSPF认证
  • M2 Mac Xcode编译报错 ‘***.framework/‘ for architecture arm64
  • Python算法题2023 输出123456789到98765432中完全不包含2023的数有多少
  • SpringBoot整合Thymeleaf
  • OpenAI的多函数调用(Multiple Function Calling)简介
  • 在国内购买GPT服务前的一定要注意!!!
  • Redis新操作
  • Panda3d 外部硬件接口介绍
  • 解决Redis分布式锁宕机出现不可靠问题-zookeeper分布式锁
  • mac系统安装docker desktop
  • 【机器学习基础】机器学习的基本术语
  • 区别Vue 2.0 和 Vue 3.0
  • react antd下拉选择框选项内容换行
  • 图像分类(一) 全面解读复现AlexNet
  • JAXB实现XML和Bean相互转换
  • 视频剪辑技巧:简单步骤,批量剪辑并随机分割视频
  • Vue3-shallowRef 和 shallowReactive函数(浅层次的响应式)