当前位置: 首页 > news >正文

机器学习算法——集成学习

目录

  • 1. Bagging

1. Bagging

Bagging(bootstrap aggregating:自举汇聚法)也叫装袋法,其思想是通过将许多相互独立的学习器的结果进行结合,从而提高整体学习器的泛化能力,是一种并行集成学习方法。

工作流程

  1. 从原始样本集中使用Bootstraping(有放回抽样,这种抽样方法产生的样本子集能很好的反映总体的分布特性)方法抽取n个训练样本,共进行K轮抽取,得到K个训练集(训练集之间相互独立)。
  2. 对于每个训练集,使用相同的数据学习算法(比如决策树、KNN等)独立训练一个基本模型。
  3. 将测试样例输入到所有基本模型中,每个模型都给出一个预测值。对于分类问题:通过投票的方式确定分类结果(每个模型只有一票);对于回归问题:计算预测值的均值作为预测结果。

代码实践(Jupyter Notebook实现)

from sklearn import neighbors
from sklearn import datasets
from sklearn.ensemble import BaggingClassifier
from sklearn import tree
from sklearn.model_selection import train_test_split
import numpy as np
import matplotlib.pyplot as plt#------------------------------------------------------------------#
# 使用datasets模块导入鸢尾花数据集,并切分特征值和标签值
# train_test_split(x_data, y_data):将数据集划分为测试集和训练集,
# 默认情况下,训练集占3/4,测试集占1/4
#-----------------------------------------------------------------#
iris = datasets.load_iris()
x_data = iris.data[:,:2]
y_data = iris.target
x_train, x_test, y_train, y_test = train_test_split(x_data, y_data)
# 利用等高线绘制分类边界图
def plot(model):# 获取数据值所在的范围x_min, x_max = x_data[:, 0].min() - 1, x_data[:, 0].max() + 1y_min, y_max = x_data[:, 1].min() - 1, x_data[:, 1].max() + 1# 生成网格矩阵元素xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02),np.arange(y_min, y_max, 0.02))#-----------------------------------------------------## 预测分类结果# ravel():将多为数据展平为一维数据# np.c_:按列连接两个数组,即拼接成点的坐标的形式# contourf(xx, yy, z):创建填充等高线图,参数需为二维数组#-----------------------------------------------------#z = model.predict(np.c_[xx.ravel(), yy.ravel()])z = z.reshape(xx.shape)cs = plt.contourf(xx, yy, z)
# 创建KNN模型,使用训练集训练模型
knn = neighbors.KNeighborsClassifier()
knn.fit(x_train, y_train)
# 绘制分类边界图
plot(knn)
# 样本散点图
plt.scatter(x_data[:, 0], x_data[:, 1], c=y_data)
# 打印准确率
knn.score(x_test, y_test)

在这里插入图片描述

# 创建CART决策树模型,使用训练集训练模型
dtree = tree.DecisionTreeClassifier()
dtree.fit(x_train, y_train)
# 绘制分类边界图
plot(dtree)
# 样本散点图
plt.scatter(x_data[:, 0], x_data[:, 1], c=y_data)
# 打印准确率
dtree.score(x_test, y_test)

在这里插入图片描述

# 创建 Bagging 分类器对象,以KNN分类器作为基分类器,创建100个KNN基分类器
bagging_knn = BaggingClassifier(knn, n_estimators=100)
# 模型拟合
bagging_knn.fit(x_train, y_train)
# 绘制分类边界图
plot(bagging_knn)
# 样本散点图
plt.scatter(x_data[:, 0], x_data[:, 1], c=y_data)
# 打印准确率
bagging_knn.score(x_test, y_test)

在这里插入图片描述

# 创建 Bagging 分类器对象,以CART决策树分类器作为基分类器,创建100个基分类器
bagging_tree = BaggingClassifier(dtree, n_estimators=100)
# 模型拟合
bagging_tree.fit(x_train, y_train)
# 绘制分类边界图
plot(bagging_tree)
# 样本散点图
plt.scatter(x_data[:, 0], x_data[:, 1], c=y_data)
# 打印准确率
bagging_tree.score(x_test, y_test)

在这里插入图片描述
准确率汇总

算法准确率
KNN73.6 8%
Bagging(KNN)76.32%
DecisionTree57.89%
Bagging(DecisionTree)60.53%

注:由于数据集切分的随机性和Bagging中每个基分类器所使用的训练集不同,因此每次运行的结果可能不同,且Bagging的准确率可能会比单分类器的准确率低

http://www.lryc.cn/news/234342.html

相关文章:

  • java springboot在当前测试类中添加临时属性 不影响application和其他范围
  • 原型网络Prototypical Network的python代码逐行解释,新手小白也可学会!!由于工作量大,准备整8个系列完事,-----系列5
  • milvus数据库的数据管理-插入数据
  • 系列一、请谈谈你对JVM的理解?Java8的虚拟机有什么更新?
  • 恕我直言,大模型对齐可能无法解决安全问题,我们都被表象误导了
  • Apache Airflow (九) :Airflow Operators及案例之BashOperator及调度Shell命令及脚本
  • IJ中配置TortoiseSVN插件:
  • 个人实现在线支付,一种另类的在线支付解决方案
  • 浅谈智能安全配电装置应用在银行配电系统中
  • macOS下如何使用Flask进行开发
  • 记一次服务器配置文件获取OSS
  • 合众汽车选用风河Wind River Linux系统
  • PTA平台-2023年软件设计综合实践_5(指针及引用)
  • 智慧卫生间
  • Cadence virtuoso drc lvs pex 无法输入
  • 反序列化漏洞(2), 分析调用链, 编写POC
  • Pytorch reshape用法
  • Latex 辅助写作工具
  • frp新版本frp_0.52.3设置
  • 100G.的DDoS高防够用吗?
  • 【django+vue】项目搭建、解决跨域访问
  • 【数据库】数据库连接池导致系统吞吐量上不去-复盘
  • 华纳云:租用的服务器连接超时怎么办?
  • 基于MS16F3211芯片的触摸控制灯的状态变化和亮度控制(11.17,PWM)
  • 编译buildroot出错,这个怎么解决呢,感谢
  • 【0基础学Java第十课】-- 认识String类
  • lxml基本使用
  • 【数据结构初阶】链表OJ
  • 【Vue渲染】 条件渲染 | v-if | v-show | 列表渲染 | v-for
  • 开源网安解决方案荣获四川数实融合创新实践优秀案例