当前位置: 首页 > news >正文

OpenCV图像纹理

LBP描述

LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子;它具有旋转不变性和灰度不变性等显著的优点。它是首先由T. Ojala, M.Pietikäinen, 和D. Harwood 在1994年提出,用于纹理特征提取。而且,提取的特征是图像的局部的纹理特征

计算过程 

原始的LBP算子定义为在3\*3的窗口内,以窗口中心像素为阈值,将相邻的8个像素的灰度值与其进行比较,若周围像素值大于中心像素值,则该像素点的位置被标记为1,否则为0。这样,3\*3邻域内的8个点经比较可产生8位二进制数(通常转换为十进制数即LBP码,共256种),即得到该窗口中心像素点的LBP值,并用这个值来反映该区域的纹理信息。数学表达式方式如下图所示

70f436408cb74b9a9e4812ab38623f9c.webp

 上述表述可能会比较抽象,接下来我们举一个例子表述 一下:

36d6c7fce56e48cb8880d94a03a4310f.webp 

代码实现

class LBP 
{
public:LBP(string url = "mm.jpg") :img(imread(url, IMREAD_GRAYSCALE)) {result["img"] = img;}void GetLBP(){result["LBP"] = Mat::zeros(img.rows - 2, img.cols - 2, CV_8UC1);for (int i = 1; i < img.rows - 1; i++) {for (int j = 1; j < img.cols - 1; j++) {uchar temp = img.at<uchar>(i, j);uchar color = 0;color |= (img.at<uchar>(i - 1, j - 1) > temp) << 7;color |= (img.at<uchar>(i - 1, j) > temp) << 6;color |= (img.at<uchar>(i - 1, j + 1) > temp) << 5;color |= (img.at<uchar>(i, j + 1) > temp) << 4;color |= (img.at<uchar>(i+1, j + 1) > temp) << 3;color |= (img.at<uchar>(i+1, j) > temp) << 2;color |= (img.at<uchar>(i+1, j - 1) > temp) << 1;color |= (img.at<uchar>(i, j - 1) > temp) << 0;result["LBP"].at<uchar>(i - 1, j - 1) = color;}}}void Show() {for (auto v : result) {imshow(v.first, v.second);}waitKey(0);}protected:map<string, Mat> result;Mat img;
};

 214a5f7746aa4b7499ff86a167f1bba9.webp

SIFT特征检测

尺度不变特征转换(Scale-invariant feature transform或SIFT)是一种电脑视觉的算法用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置、尺度、旋转不变量,此算法由 David Lowe在1999年所发表,2004年完善总结。 其应用范围包含物体辨识、机器人地图感知与导航、影像缝合、3D模型建立、手势辨识、影像追踪和动作比对。

SIFT算法是为了解决图片的匹配问题,想要从图像中提取一种对图像的大小和旋转变化保持鲁棒的特征,从而实现匹配。这一算法的灵感也十分的直观:人眼观测两张图片是否匹配时会注意到其中的典型区域(特征点部分),如果我们能够实现这一特征点区域提取过程,再对所提取到的区域进行描述就可以实现特征匹配了。

 

SIFT算法大致流程

高斯金字塔

  • 人看物体时近大远小,可以对图片下采样实现
  • 远处模糊,可以对图像高斯平滑实现

 

高斯差分金字塔特征提取

  • 获取了不同尺度的图片
  • 获取高频区域(边缘检测的算法使用差分滤波器如拉普拉斯滤波器、sobel滤波器)

 

特征点处理

  • 阈值化操作(去噪)
  • 非极大值抑制
  • 二阶泰勒修正
  • 低对比度去除
  • 边缘效应去除

 

描述特征点

  • 确定特征点区域方向
  • 特征点区域描述子

 

API介绍 

static Ptr<SIFT> create(int nfeatures = 0, int nOctaveLayers = 3,double contrastThreshold = 0.04, double edgeThreshold = 10,double sigma = 1.6);
/*******************************************************************
*            nfeatures:                     保留的最佳特性的数量            
*            cornOctaveLayersners:        高斯金字塔最小层级数
*            contrastThreshold:            对比度阈值用于过滤区域中的弱特征
*            edgeThreshold:              用于过滤掉类似边缘特征的阈值
*            sigma:                        高斯输入层级            
*********************************************************************/

 


virtual void detect( InputArray image,std::vector<KeyPoint>& keypoints,InputArray mask=noArray());
/*******************************************************************
*            image:                 输入图                
*            keypoints:            角点信息
*            mask:                计算亚像素角点区域大小            
*********************************************************************/

 


void drawKeypoints( InputArray image, const std::vector<KeyPoint>& keypoints, InputOutputArray outImage,const Scalar& color=Scalar::all(-1), DrawMatchesFlags flags=DrawMatchesFlags::DEFAULT );
/*******************************************************************
*            image:                 输入图                
*            keypoints:            角点信息
*            outImage:            输出图
*            color:              颜色
*            flags:                绘制标记            
*********************************************************************/

完整代码 

#include <iostream>
#include <map>
#include <new>
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;
class SIFTFeature 
{
public:SIFTFeature() :img(imread("mm.jpg")) {result["img"] = img;}void TestSIFT() {Ptr<SIFT> sift = SIFT::create();sift->detect(img, point);drawKeypoints(img, point, result["SIFT"], Scalar(255, 0, 255));}void Show() {for (auto& v : result) {imshow(v.first, v.second);}waitKey(0);}
protected:Mat img;vector<KeyPoint> point;map<string, Mat> result;
};int  main() 
{unique_ptr<SIFTFeature> p(new SIFTFeature);p->TestSIFT();p->Show();return 0;
}

效果图:

7cbe859b2ef44a07b864e928728a95b4.webp 

 

http://www.lryc.cn/news/233929.html

相关文章:

  • 自媒体写手提问常用的ChatGPT通用提示词模板
  • 分类预测 | Matlab实现PSO-LSTM-Attention粒子群算法优化长短期记忆神经网络融合注意力机制多特征分类预测
  • 3GPP TS38.201 NR; Physical layer; General description (Release 18)
  • 【GitLab】-HTTP 500 curl 22 The requested URL returned error: 500~SSH解决
  • 【如何学习Python自动化测试】—— 自动化测试环境搭建
  • 在通用jar包中引入其他spring boot starter,并在通用jar包中直接配置这些starter的yml相关属性
  • Seaborn 回归(Regression)及矩阵(Matrix)绘图
  • nginx学习(1)
  • CLEARTEXT communication to XX not permitted by network security policy 报错
  • 91.移动零(力扣)
  • PatchMatchNet笔记
  • 实时人眼追踪、内置3D引擎,联想ThinkVision裸眼3D显示器创新四大应用场景
  • SELinux零知识学习十四、SELinux策略语言之客体类别和许可(8)
  • Unity——URP相机详解
  • CRUD-SQL
  • 【C语言 | 数组】C语言数组详解(经典,超详细)
  • 第三十三节——组合式API生命周期
  • 【Linux】Alibaba Cloud Linux 3 安装 PHP8.1
  • 【容器化】Kubernetes(k8s)
  • stm32 HSUSB
  • C# String.Trim 方法
  • <Linux>(极简关键、省时省力)《Linux操作系统原理分析之Linux 进程管理 4》(8)
  • RT-Thread STM32F407 PWM
  • idea中把spring boot项目打成jar包
  • levelDB之基础数据结构-Slice
  • 上位机模块之通用重写相机类
  • 机器人导航+OPENCV透视变换示例代码
  • KofamScan-KEGG官方推荐的使用系同源和隐马尔可夫模型进行KO注释
  • 代码随想录算法训练营第五十五天丨 动态规划part16
  • 【Linux】kernel与应用消息队列的一种设计