当前位置: 首页 > news >正文

【算法练习Day46】判断子序列不同的子序列

在这里插入图片描述

​📝个人主页:@Sherry的成长之路
🏠学习社区:Sherry的成长之路(个人社区)
📖专栏链接:练题
🎯长路漫漫浩浩,万事皆有期待

文章目录

  • 判断子序列
  • 不同的子序列
  • 总结:

判断子序列

392. 判断子序列 - 力扣(LeetCode)

判断子序列这道题目,和上一期的题解法几乎完全相同,只是递推公式有一点差别,但是要是完全用之前的代码也是可行的。

dp数组的含义:dp【i】【j】代表以i-1和j-1为结尾的相同子序列的长度。之前我们讲过,同时操作两个数组的时候,通常都是设置二维数组。设置为i-1和j-1表示的原因是,方便数组初始化。

递推公式:当两个字符相等时候

if(s【i-1】==t【j-1】)dp【i】【j】=dp【i-1】【j-1】+1;

因为dp数组含义的缘故,我们在判断时候对应的也是它的字符串的i-1位置和j-1位置,然后如果两字符此时对应相等,那么就是之前最大的相同子序列的长度+1。

else dp【i】【j】=dp【i】【j-1】;

如果两字符不相等,那么就让此时的对应的do等于 dp【i】【j-1】,这是因为我们是判断s是否为t的子序列,是删除t中某些元素看看能否构成s,已知此时两对应字符一定不相等,那此时dp就等于不考虑当前这个不等的字符时,所对应的最长相同子序列长度,这样做也相当于变相删除该多余字符。细心的读者也许已经发现了,与之前那期递推公式不同的是没有dp【i-1】【j】这一项了,之前的递推公式是它们两个取最大值,那是因为上一道题两个字符都可以删除若干数据,而最终保证结果是最长的公共部分就可以了,不一定给的哪个字符串更长,所以删哪一个也就不一定了,需要取最大值,而这道题我们是明确的判断s是否是t的子序列,那就是t长要删除某元素后看是否构成s。至于为什么我说用和之前一样的代码也能通过呢?因为我们不需要删除s的元素,也就是说加上它也不会影响代码的运行逻辑,但是建议还是要根据题目的需求写逻辑,而不是这类题都用一种固定的递推公式来写,这样多思考更有利于理解题的本质。

dp数组初始化:dp数组初始化就是全都是0没什么说的,由于dp定义的缘故,和递推公式的推理,都使得,应该被初始化为0。

遍历顺序:还是正常的从左到右从上到下。

class Solution {
public:bool isSubsequence(string s, string t) {vector<vector<int>>dp(s.size()+1,vector<int>(t.size()+1,0));for(int i=1;i<=s.size();i++){for(int j=1;j<=t.size();j++){if(s[i-1]==t[j-1])dp[i][j]=dp[i-1][j-1]+1;else dp[i][j]=dp[i][j-1];}}if(dp[s.size()][t.size()]==s.size())return true;return false;}
};

题整体来看如果,上一期的题目可以完全理解,那这道题就还是相对好做一些。

不同的子序列

115. 不同的子序列 - 力扣(LeetCode)

与上一道题的相比,这道题显得难了不少。也是困扰了我一段时间的题,感觉递推公式不是很好理解。

dp数组含义:这道题是判断在s里t出现的次数有多少次,这道题并不是说直观的就能看出s字符串里有几个t,不要曲解题目意思,它是说有多少种删除元素的方法,使得字符串由s转化为t,应该这样去理解。所以应该将数组含义定义为以i-1结尾的字符串s中包含有以j-1为结尾的t多少个。这个dp数组定义非常重要,要好好理解,才能够理解下面的递推公式。

递推公式:递推公式由两部分组成,和上一题一样,一个是要匹配的字符匹配,另一个字符不匹配,要模拟删除,而不同的是这道题里能够相匹配的字符递推公式,也分成两部分。

经过了一段时间的理解,我觉得这样想是能够帮助理解递推式的。

如果两字符不匹配,那么dp【i】【j】=dp【i-1】【j】因为我们上面说过dp数组的含义,表示的是前一个位置,当前一个位置不匹配字符,那么说明此时应该和同一列的上一行所代表的个数相等,为什么是这样呢?画dp数组推到图也就是打印,我们可以知道,s表示行t表示列时候,此时s对应的字符和t不等,那么就应该此处的数值继承下来上一次匹配成功的值,虽然它的同列上一行也可能不匹配,但是它的上一处也是继承的匹配成功的那个个数。我们是拿着s的字符一点点找t的字符去匹配,如果还是不明白,画一次会帮助理解。

那如果两字符相匹配呢?我们不仅仅要保留之前的匹配不成功的所继承下来的个数,还要加上此次匹配成功时候应该加上的个数,而上一次怕匹配成功是哪一个位置?是dp【i-1】【j-1】也就是我们要填写的位置的左上角,,它是匹配成功的时候所继承下来的含有个数,两者一做和就能得到答案了,所以递推公式是:

if(s【i-1】==t【j-1】)dp【i】【j】=dp【i-1】【j-1】+dp【i-1】【j】
else dp【i】【j】=dp【i-1】【j】

一开始怎么也想不明白为什么,要这么写,后来换一种思维去想,就能想得明白了。

dp数组初始化:初始化也是有一定讲究的,虽然我们是定义的i-1和j-1的位置,但此题并不意味着要全部初始化为0,因为我们是求得s里有几个t,当t是空字符串时候,每一个i-1下标都对应着一种方法得到t,那就是删除i-1之前的全部字符,得到一个空字符串。s是空字符串时候,无论怎么删都不可能得到一个t,而且其他的位置都会被递推公式所覆盖,所以除了第一行之外全都初始化为0就可以了,第一行初始化为1。

遍历顺序:根据递推公式得到,i,j位置由它的上面位置和左上位置推导,所以依旧是从上到下从左到右

class Solution {
public:int numDistinct(string s, string t) {vector<vector<unsigned long int>>dp(s.size()+1,vector<unsigned long int>(t.size()+1,0));dp[0][0]=1;for(int i=1;i<s.size();i++)dp[i][0]=1;for(int j=1;j<t.size();j++)dp[0][j]=0;for(int i=1;i<=s.size();i++){for(int j=1;j<=t.size();j++){if(s[i-1]==t[j-1])dp[i][j]=dp[i-1][j-1]+dp[i-1][j];//可以理解为dp二维数组即使本次匹配字符未成功//它也至少是上一次匹配的个数,因为dp数组的定义就是s字符串i-1位置下,对应的有几个t//本次即使未匹配成功,也不应该影响之前匹配成功保留下来的次数。//而如果匹配成功,那么就是两个字符匹配的成功个数加上本来有的个数else dp[i][j]=dp[i-1][j];}}return dp[s.size()][t.size()];}
};

总结:

今天我们完成了判断子序列、不同的子序列两道题,相关的思想需要多复习回顾。接下来,我们继续进行算法练习。希望我的文章和讲解能对大家的学习提供一些帮助。

当然,本文仍有许多不足之处,欢迎各位小伙伴们随时私信交流、批评指正!我们下期见~

在这里插入图片描述

http://www.lryc.cn/news/227287.html

相关文章:

  • Java设计模式之访问者模式
  • PySide/PYQT如何用Qt Designer和代码来设置文字属性,如何设置文字颜色?
  • ubuntu 设置最大带宽
  • 如何在 Python 中执行 MySQL 结果限制和分页查询
  • Django配置文件,request,链接mysql方法,Orm简介
  • ubuntu下载各个版本chrome方法
  • Http状态码502常见原因及排错思路(实战)
  • 国际阿里云:无法ping通ECS实例公网IP的排查方法!!!
  • Nginx缓存基础
  • 【数据结构】Lambda
  • 力扣labuladong——一刷day28
  • 2023年CCF非专业级别软件能力认证第二轮 (CSP-S)提高级C++语言试题
  • 华为ensp:静态默认路由
  • xss 通过秘籍
  • Kibana使用Watcher监控服务日志并发送飞书报警(Markdown)
  • Flutter笔记:光影动画按钮、滚动图标卡片组等
  • 【论文】利用移动性的比例公平蜂窝调度测量和算法
  • 内存条选购注意事项(电脑,笔记本)
  • ChatGPT 宕机?OpenAI 将中断归咎于 DDoS 攻击
  • go单元格测试
  • JavaScript理解表达式和语句的含义
  • Visual Studio导入Wiinform项目文件,引用显示黄色感叹号
  • 深入研究SVN代码检查的关键工具:svnchecker vs. SonarQube,选择最适合你的代码检查工具
  • 博客积分上一万一千了
  • docker 构建并运行 python项目
  • django建站过程(4)创建文档显示页面
  • uniapp本地存储的几种方式
  • 74hc595模块参考
  • 【Unity细节】Failed importing package???Unity导包失败?
  • 【问题记录】docker pull 镜像的时候 devel 版本和无 devel 版本的差别