当前位置: 首页 > news >正文

Python进行数据可视化,探索和发现数据中的模式和趋势。

文章目录

  • 前言
  • 第一步:导入必要的库
  • 第二步:加载数据
  • 第三步:创建基本图表
  • 第四步:添加更多细节
  • 第五步:使用Seaborn库创建更复杂的图表
      • 关于Python技术储备
        • 一、Python所有方向的学习路线
        • 二、Python基础学习视频
        • 三、精品Python学习书籍
        • 四、Python工具包+项目源码合集
        • ①Python工具包
        • ②Python实战案例
        • ③Python小游戏源码
        • 五、面试资料
        • 六、Python兼职渠道


前言

在本文中,我们介绍了使用Python进行数据可视化的基本步骤。我们首先导入必要的库,然后加载数据并创建基本图表。接下来,我们添加更多的细节来使图表更具可读性。最后,我们使用Seaborn库创建了更复杂的图表。通过这些步骤,您可以开始探索和发现数据中的模式和趋势。
在这里插入图片描述


第一步:导入必要的库

在开始之前,我们需要导入一些必要的库,例如Pandas、Matplotlib和Seaborn。这些库可以通过以下命令导入:

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

第二步:加载数据

在进行数据可视化之前,我们需要加载数据。在这个例子中,我们将使用Pandas库中的read_csv()函数来加载一个CSV文件。以下是一个示例代码:

data = pd.read_csv('data.csv')

第三步:创建基本图表

在创建图表之前,我们需要决定我们想要创建哪种类型的图表。在本文中,我们将使用散点图和折线图作为例子。

散点图:

散点图可以用于显示两个变量之间的关系。以下是创建一个基本散点图的代码:

plt.scatter(data['x'], data['y'])
plt.title('Scatter Plot')
plt.xlabel('X')
plt.ylabel('Y')
plt.show()

折线图:

折线图可以用于显示一组数据的变化趋势。以下是创建一个基本折线图的代码:

plt.plot(data['x'], data['y'])
plt.title('Line Plot')
plt.xlabel('X')
plt.ylabel('Y')
plt.show()

第四步:添加更多细节

创建基本图表后,我们可以添加更多的细节来使它们更具可读性。以下是一些常用的细节:

添加图例:

plt.scatter(data['x'], data['y'], label='Data Points')
plt.title('Scatter Plot')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.show()

更改颜色和样式:

plt.plot(data['x'], data['y'], color='red', linestyle='--', marker='o')
plt.title('Line Plot')
plt.xlabel('X')
plt.ylabel('Y')
plt.show()

添加子图:

fig, (ax1, ax2) = plt.subplots(1, 2)
ax1.scatter(data['x'], data['y'])
ax1.set_title('Scatter Plot')
ax1.set_xlabel('X')
ax1.set_ylabel('Y')
ax2.plot(data['x'], data['y'])
ax2.set_title('Line Plot')
ax2.set_xlabel('X')
ax2.set_ylabel('Y')
plt.show()

第五步:使用Seaborn库创建更复杂的图表

Seaborn是一个建立在Matplotlib之上的库,它提供了更多的可视化选项。以下是一个使用Seaborn库创建散点图的例子:

sns.scatterplot(data=data, x='x', y='y',hue='category')
plt.title('Scatter Plot')
plt.xlabel('X')
plt.ylabel('Y')
plt.show()

这个散点图会将不同的类别用不同的颜色表示,更容易区分不同的数据点。

另外一个Seaborn库的例子是使用sns.lineplot()函数创建折线图:

sns.lineplot(data=data, x='x', y='y')
plt.title('Line Plot')
plt.xlabel('X')
plt.ylabel('Y')
plt.show()

和Matplotlib一样,Seaborn库也可以添加更多的细节,例如更改颜色和样式、添加子图等。


关于Python技术储备

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

👉CSDN大礼包:《Python入门资料&实战源码&安装工具】免费领取安全链接,放心点击

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

二、Python基础学习视频

② 路线对应学习视频

还有很多适合0基础入门的学习视频,有了这些视频,轻轻松松上手Python~在这里插入图片描述
在这里插入图片描述

③练习题

每节视频课后,都有对应的练习题哦,可以检验学习成果哈哈!
在这里插入图片描述
因篇幅有限,仅展示部分资料

三、精品Python学习书籍

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述

四、Python工具包+项目源码合集
①Python工具包

学习Python常用的开发软件都在这里了!每个都有详细的安装教程,保证你可以安装成功哦!
在这里插入图片描述

②Python实战案例

光学理论是没用的,要学会跟着一起敲代码,动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。100+实战案例源码等你来拿!
在这里插入图片描述

③Python小游戏源码

如果觉得上面的实战案例有点枯燥,可以试试自己用Python编写小游戏,让你的学习过程中增添一点趣味!
在这里插入图片描述

五、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
在这里插入图片描述
在这里插入图片描述

六、Python兼职渠道

而且学会Python以后,还可以在各大兼职平台接单赚钱,各种兼职渠道+兼职注意事项+如何和客户沟通,我都整理成文档了。
在这里插入图片描述
在这里插入图片描述
这份完整版的Python全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

http://www.lryc.cn/news/223850.html

相关文章:

  • 2023年中国自然语言处理行业研究报告
  • RISC-V与RISC Zero zkVM的关系
  • 20行JS代码实现屏幕录制
  • 基于springboot实现福聚苑社区团购平台系统项目【项目源码】
  • 网际报文协议ICMP及ICMP重定向实例详解
  • 前端AJAX入门到实战,学习前端框架前必会的(ajax+node.js+webpack+git)(三)
  • Android 12 S 系统开机流程分析 - SetupSelinux(二)
  • 高速信号PCB布局怎么布?(电子硬件)
  • vue 子页面通过暴露属性,实现主页面的某事件的触发
  • 计算机丢失mfc140.dll是什么意思?附送修复教程
  • R语言将向量横向转换为单行数据框,随后整合数量不确定的数据框
  • ​怎么测试websocket接口
  • 21 移动网络的前世今生
  • 里氏替换原则
  • 【JS】Chapter11-正则阶段案例
  • 跨时钟域(Clock Domain Crossing,CDC)
  • PTA古风排版
  • SQL 注入漏洞详解
  • 关于阿里云 ACK ingress部分补充
  • 轻量封装WebGPU渲染系统示例<22>- 渲染到纹理(RTT)(源码)
  • 官方Redis视图化工具Redisinsight
  • Vue+Django REST framework 打造生鲜电商项目课程下载树大根深
  • react中遇到的分页问题
  • 变电站自动化系统中的安全措施分析及应用-安科瑞
  • 【MongoDB】索引 – 文本索引
  • 【广州华锐互动】影视制作VR在线学习:身临其境,提高学习效率
  • Linux 命令:PS(进程状态)
  • 手把手教你:LLama2原始权重转HF模型
  • 后入能先出,一文搞懂栈
  • 京东API接口的应用场景:商品信息查询,商品详情获取