当前位置: 首页 > news >正文

最大连续子数组

最大连续子数组(Maximum Subarray)问题是一个经典的算法问题,其目标是在给定的整数数组中找到一个连续的子数组,使得该子数组的元素之和最大。这个问题有多种解决方法,其中包括暴力解法、分治法和动态规划等。

下面是一个讲解最大连续子数组问题的常见解决方法:

  1. 暴力解法: 暴力解法是最简单的方法,它通过两层嵌套循环遍历所有可能的子数组,计算它们的和,并找到和最大的子数组。这个方法的时间复杂度是O(n^2),其中n是数组的长度。尽管它不是最高效的方法,但它是一个朴素而容易理解的解决方案。

  2. 动态规划: 动态规划是解决最大连续子数组问题的高效方法之一。在这种方法中,我们维护一个动态规划数组dp,其中dp[i]表示以第i个元素结尾的最大子数组和。动态规划的关键是通过递推关系来计算dp[i],这个关系通常是 dp[i] = max(dp[i-1] + nums[i], nums[i])。最终,最大子数组和就是dp数组中的最大值。这个方法的时间复杂度是O(n),其中n是数组的长度。

  3. 分治法: 分治法是另一种解决最大连续子数组问题的方法。它将数组分成三个部分:左子数组、右子数组和跨越中间的子数组。然后,递归地求解左子数组和右子数组的最大子数组和,以及跨越中间的最大子数组和。最后,将这三者中的最大值作为最终的结果。这个方法的时间复杂度是O(n*log(n)),其中n是数组的长度。

  4. Kadane算法: Kadane算法是一种高效的动态规划方法,用于解决最大连续子数组问题。它维护两个变量,cur表示当前子数组的和,maxv表示最大子数组和。在遍历数组的过程中,它不断更新curmaxv,并且当cur小于0时,将cur重置为0。最终,maxv就是最大子数组和。这个方法的时间复杂度是O(n),其中n是数组的长度。

我们来看看代码
 

int fun04(int* p, int left, int right);
void fun()
{int i=0, j=0, k=0;int len;int maxv;int v[] = { 1,-3,6,8,0,-7,8 };len = 7; maxv = v[0];for (int i = 0; i < len; i++){for (j = i; j < len; j++){if (j == i){maxv = max(maxv, v[j]);}else {v[i] += v[j];maxv = max(maxv, v[i]);}}}cout << maxv << endl;
}
void fun01()
{int v[] = { 1,-3,6,8,0,-7,8 };int dp[7];dp[0] = v[0];int maxv = dp[0];for (int i = 1; i < 7; i++){dp[i] = max(dp[i - 1] + v[i], v[i]);maxv = max(maxv, dp[i]);}cout << maxv << endl;
}void fun02() {int v[] = { -2,-1 };int maxv = v[0];int cur = 0; for (int i = 0; i < 2; i++) {cur += v[i];maxv = max(maxv, cur);if (cur >= 0) {maxv = max(maxv, cur);}else {cur = 0;}}cout << maxv << endl;
}void fun03() {int v[] = { 1,-3,6,8,0,-7,8 };cout << fun04(v, 0, 6);
}
int fun04(int* p, int left, int right) {if (left == right) {return p[left];}int mid = (left + right) >> 1;int maxleft = fun04(p, left, mid);int maxright = fun04(p, mid + 1, right);int tmpleft = p[mid - 1];int tmp = tmpleft;for (int i = mid - 2; i >= 0; i--) {tmp += p[i];tmpleft = max(tmp, tmpleft);}int tmpright = p[mid + 1];tmp = tmpright;for (int i = mid + 2; i < right; i++){tmp += p[i];tmpright = max(tmp, tmpright);}int midmax = p[mid] + (tmpleft > 0 ? tmpleft : 0) + (tmpright > 0 ? tmpright : 0);return max(maxleft, maxright > midmax ? maxright : midmax);
}

上面的代码演示了几种不同的方法来找到数组中的最大子数组和(最大子序列和问题),并进行了简要的分析。

  1. fun() 方法使用了嵌套的两个 for 循环来遍历所有可能的子数组和,同时维护最大值。这是一种朴素的暴力解法,时间复杂度为O(n^2),其中n是数组的长度。

  2. fun01() 方法使用了动态规划的思想,维护一个dp数组,其中dp[i]表示以第i个元素结尾的最大子数组和。在遍历数组的过程中,根据前一个元素的最大子数组和来计算当前元素的最大子数组和,从而避免了重复计算。这种方法的时间复杂度为O(n),其中n是数组的长度。

  3. fun02() 方法是一种更简单的方法,它遍历一次数组,同时维护当前子数组的和cur和最大子数组和maxv。当cur小于0时,表示当前子数组和不再对最大子数组和有贡献,需要将cur重置为0。这种方法也是O(n)时间复杂度。

  4. fun03() 方法是一个递归的分治方法,其中 fun04() 函数采用分治思想来寻找最大子数组和。它将数组分为左右两部分,然后分别计算左部分、右部分以及跨越中间的最大子数组和,然后取三者中的最大值作为最终的结果。这个方法的时间复杂度也是O(n*log(n)),因为它每次将数组分成两半,需要进行递归处理。

总的来说,动态规划方法(fun01()fun02())是解决最大子数组和问题的较优解,具有O(n)的时间复杂度,而分治方法(fun03())也是一个有效的算法,但在实际情况中可能不如动态规划方法高效。朴素的暴力解法(fun())具有O(n^2)的时间复杂度,不适用于大规模数据。选择合适的算法取决于实际问题和性能要求。

http://www.lryc.cn/news/222762.html

相关文章:

  • 【FastCAE源码阅读5】使用VTK实现鼠标拾取对象并高亮
  • 【全志H616 使用标准库 完成自制串口库(分文件实现) orangepi zero2(开源)】.md updata: 23/11/07
  • 小白学爬虫:手机app分享商品短连接获取淘宝商品链接接口|淘宝淘口令接口|淘宝真实商品链接接口|淘宝商品详情接口
  • python 应用之 request 请求调用
  • BeanUtils.copyProperties浅拷贝的坑你得知道?
  • ubuntu安装rabbitMQ 并 开启记录消息的日志
  • 思维模型 首因效应
  • Redis极速上手开发手册【Redis全面复习】
  • [动态规划] (十四) 简单多状态 LeetCode LCR 091.粉刷房子
  • 【VSS版本控制工具】
  • 数据持久化技术(Python)的使用
  • 第23章(上)_索引原理之索引与约束
  • 金蝶云星空BOS设计器中基础资料字段属性“过滤”设置获取当前界面的基础资料值作为查询条件
  • OFDM深入学习及MATLAB仿真
  • 软件测试简历原来是写了这些才让面试官已读不回
  • ESP32网络开发实例-Web服务器RGB LED调光
  • C# TCP Server服务端多线程监听RFID读卡器客户端上传的读卡数据
  • 【electron】【附排查清单】记录一次逆向过程中,fetch无法请求http的疑难杂症(net::ERR_BLOCKED_BY_CLIENT)
  • 【JS】scrollTop+scrollHeight+clientTop+clientHeight+offsetTop+offsetHeight
  • Go语言函数用法
  • 3.5、Linux:命令行git的使用
  • 基于servlet+jsp+mysql网上书店系统
  • 自用工具类整理
  • jenkins2
  • YOLOv5独家改进:分层特征融合策略MSBlock | 南开大学提出YOLO-MS |超越YOLOv8与RTMDet,即插即用打破性能瓶颈
  • HTTP 协议详解-上(Fiddler 抓包演示)
  • 龙迅LT8911EXB功能概述 MIPICSI/DSI TO EDP
  • EtherCAT主站SOEM -- 5 -- SOEM之ethercatdc.h/c文件解析
  • 【分布式事务】深入探索 Seata 的四种分布式事务解决方案的原理,优缺点以及在微服务中的实现
  • C语言 || volatile