当前位置: 首页 > news >正文

【AI好好玩02】利用Lama Cleaner本地实现AIGC试玩:擦除对象、替换对象、更换风格等等

目录

  • 一、安装
  • 二、擦除功能
    • 1. LaMa模型
      • 实操实例一:去除路人
      • 实操实例二:去水印
      • 实操实例三:老照片修复
    • 2. LDM模型
    • 3. ZITS模型
    • 4. MAT模型
    • 5. FcF模型
    • 6. Manga模型
  • 三、替换对象功能
    • 1. sd1.5
    • 2. sd2
    • 3. anything4
    • 4. realisticVision1.4
    • 5. 四个模型的对比
  • 四、进阶版功能
    • 1. Paint By Example
    • 2. Stable Diffusion with ControlNet
    • 3. Instruct Pix2pix

Lama Cleaner是一个免费的、开源的、完全自托管的修复工具,里面提供了很多最前沿的AIGC模型。可以使用它从图片中删除任何不需要的物体、缺陷、人物,或删除和替换图片上的任何内容。本文章详细介绍了该工具的所有功能,并体验了下每个功能的实际效果

github:https://github.com/Sanster/lama-cleaner

官方使用文档:https://lama-cleaner-docs.vercel.app/

一、安装

# 如果电脑带GPU,为了使用GPU首先安装与cuda版本相对应的pytorch,比如cuda11.7的
pip install torch==1.13.1+cu117 torchvision==0.14.1 --extra-index-url https://download.pytorch.org/whl/cu117# pip直接安装
pip install lama-cleaner

本文安装时版本更新到1.2.4

二、擦除功能

下方擦除功能所需要的模型全部上传至夸克网盘(链接:https://pan.quark.cn/s/370b455924ab,提取码:SNrE),在github下载失败时可手动网盘下载至规定路径。

找到lama-cleaner.exe的路径:C:\Users\zhouying\AppData\Roaming\Python\Python39\Scripts(不同电脑路径不同)

cd C:\Users\zhouying\AppData\Roaming\Python\Python39\Scriptslama-cleaner --model=lama --device=cuda --port=8080

device如果没有gpu:--device=cpu

该命令会自动下载AI模型到本地(也可手动下载big-lama.pt到下图红框中的路径),然后浏览器打开http://localhost:8080/就可以使用了。
在这里插入图片描述

1. LaMa模型

  • github:https://github.com/saic-mdal/lama

  • paper:Resolution-robust Large Mask Inpainting with Fourier Convolutions

lama是默认模型,模型196MB,性能已经挺不错了。

实操实例一:去除路人

在这里插入图片描述

实操实例二:去水印

涂抹过程中可以长按Ctrl键进行多处涂抹
在这里插入图片描述
在这里插入图片描述

实操实例三:老照片修复

在这里插入图片描述


可以在网页中选择不同的AI模型或在命令行中选择不同模型(下方章节),这样都会自动下载相应的模型到本地。

在这里插入图片描述


2. LDM模型

  • github:https://github.com/CompVis/latent-diffusion

  • paper:High-Resolution Image Synthesis with Latent Diffusion Models

lama-cleaner --model=ldm --device=cuda --port=8080

LDM模型手动下载链接:diffusion.pt、cond_stage_model_decode.pt、cond_stage_model_encode.pt

在这里插入图片描述

LDM vs LaMa

  • 可能比LaMa有更好、更多的细节
  • 可以通过调整Steps来平衡时间和质量
  • 比LaMa慢很多(3080 12it/s)
  • 需要更多的GPU内存(512x512 5.8G)

在这里插入图片描述

3. ZITS模型

  • github:https://github.com/DQiaole/ZITS_inpainting

  • paper:Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding

lama-cleaner --model=zits --device=cuda --port=8080

ZITS模型手动下载链接:zits-wireframe-0717.pt、zits-edge-line-0717.pt、zits-structure-upsample-0717.pt、zits-inpaint-0717.pt

ZITS vs LaMa

  • 擅长在高分辨弱纹理场景中恢复关键的边缘和线框
  • ZITS的Wireframe模块在CPU上会非常慢

在这里插入图片描述

4. MAT模型

  • github:https://github.com/fenglinglwb/MAT

  • paper:Mask-Aware Transformer for Large Hole Image Inpainting

lama-cleaner --model=mat --device=cuda --port=8080

MAT模型手动下载链接:Places_512_FullData_G.pth

特点:MAT可实现大面积像素缺失的补全和提供多样性生成

在这里插入图片描述

5. FcF模型

  • github:https://github.com/SHI-Labs/FcF-Inpainting

  • paper:Keys to Better Image Inpainting: Structure and Texture Go Hand in Hand

lama-cleaner --model=fcf --device=cuda --port=8080

FcF模型手动下载链接:places_512_G.pth

FcF vs LaMa

  • 能生成更好的结构和纹理
  • 仅支持固定大小(512x512)的输入

在这里插入图片描述

6. Manga模型

  • github:https://github.com/msxie92/MangaInpainting

  • paper:Seamless Manga Inpainting with Semantics Awareness

lama-cleaner --model=manga --device=cuda --port=8080

Manga模型手动下载链接:erika.jit、manga_inpaintor.jit

特点:在漫画图像上表现的比LaMa模型效果更好

在这里插入图片描述

三、替换对象功能

1. sd1.5

github:https://github.com/runwayml/stable-diffusion

hugging face:https://huggingface.co/runwayml/stable-diffusion-inpainting

因为需要访问hugging face,所以需要魔法

  • 运行方式一:
lama-cleaner --model=sd1.5 --device=cuda --port=8080

自动下载的文件保存路径为C:\Users\zhouying\.cache\huggingface\hub\models--runwayml--stable-diffusion-inpainting

在这里插入图片描述

  • 运行方式二:

可以先下载sd-v1-5-inpainting.ckpt到本地,然后下面的命令运行

lama-cleaner --model=sd1.5 --device=cuda --port=8080 --sd-local-model-path ./sd-v1-5-inpainting.ckpt --local-files-only

2. sd2

github:https://github.com/Stability-AI/stablediffusion

hugging face:https://huggingface.co/stabilityai/stable-diffusion-2-inpainting

lama-cleaner --model=sd2 --device=cuda --port=8080

下载的文件保存在C:\Users\zhouying\.cache\huggingface\hub\models--stabilityai--stable-diffusion-2-inpainting

3. anything4

hugging face: https://huggingface.co/andite/anything-v4.0

lama-cleaner --model=anything4 --device=cuda --port=8080

下载的文件保存在C:\Users\zhouying\.cache\huggingface\hub\models--Sanster--anything-4.0-inpainting

4. realisticVision1.4

hugging face:https://huggingface.co/SG161222/Realistic_Vision_V1.4

lama-cleaner --model=realisticVision1.4 --device=cuda --port=8080

下载的文件保存在C:\Users\zhouying\.cache\huggingface\hub\models--Sanster--Realistic_Vision_V1.4-inpainting

5. 四个模型的对比

原图:

在这里插入图片描述

涂抹图中小狗,然后prompt输入“a fox sitting on a bench”的输出如下:

在这里插入图片描述

同时,这些模型同样能提供擦除功能,只需将prompt填写为“background”

四、进阶版功能

1. Paint By Example

这个模型的输入是一张图片,模型会由这个示例图指导生成类似的内容。

github:https://github.com/Fantasy-Studio/Paint-by-Example

paper:Paint by Example: Exemplar-based Image Editing with Diffusion Models

lama-cleaner --model=paint_by_example --device=cuda --port=8080

下载的文件保存在C:\Users\zhouying\.cache\huggingface\hub\models--Fantasy-Studio--Paint-by-Example

在这里插入图片描述

2. Stable Diffusion with ControlNet

使用ControlNet可以获得更好的修复效果,命令如下:

lama-cleaner --model=sd1.5 --sd-controlnet --sd-controlnet-method control_v11p_sd15_inpaint --device=cuda --port=8080

--model支持的参数有:

  • sd1.5
  • anything4
  • realisticVision1.4

--sd-controlnet-method支持的参数有:

  • control_v11p_sd15_canny
  • control_v11p_sd15_openpose
  • control_v11p_sd15_inpaint
  • control_v11f1p_sd15_depth

官方提示,这四种方法在应用时都需要适当地调整ControlNet Weight的数值,建议canny和openpose从0.4开始调整,inpaint和depth从1.0开始调整。

尝试了一下,加了个ControlNet也没好多少,可能weight值还没调好。

在这里插入图片描述

3. Instruct Pix2pix

这个模型可以不用mask,而是直接输入prompt

github:https://github.com/timothybrooks/instruct-pix2pix

paper:InstructPix2Pix: Learning to Follow Image Editing Instructions

lama-cleaner --model=instruct_pix2pix --device=cuda --port=8080

在这里插入图片描述

拿张图试玩一下,效果挺不错的。

在这里插入图片描述

在这里插入图片描述

http://www.lryc.cn/news/219705.html

相关文章:

  • SQL FULL OUTER JOIN 关键字(完整外部连接)||SQL自连接 Self JOIN
  • 专科医院污水处理设备构造解析及工艺流程
  • 【RabbitMQ】RabbitMQ 消息的可靠性 —— 生产者和消费者消息的确认,消息的持久化以及消费失败的重试机制
  • 百万套行泊一体量产定点,中国市场「开启」智驾高低速集成
  • Gopro hero5运动相机格式化后恢复案例
  • Microsoft Dynamics 365 CE 扩展定制 - 6. 增强代码
  • 基于libopenh264 codec的svc分层流实现方案
  • 为机器学习算法准备数据(Machine Learning 研习之八)
  • 基于Python OpenCV的金铲铲自动进游戏、D牌...
  • c++中httplib使用
  • Vite 的基本原理,和 webpack 在开发阶段的比较
  • [开源]免费开源MES系统/可视化数字大屏/自动排班系统
  • python如何使用gspread读取google在线excel数据?
  • 线程同步——互斥量解锁、解锁
  • 数据结构(c语言版) 顺序表
  • Springboot 集成 RocketMq(入门)
  • Elasticsearch:ES|QL 中的数据丰富
  • 【linux编程】linux文件IO高级I/O函数介绍和代码示例
  • jQuery获取地址栏GET参数值
  • JAVA应用中线程池设置多少合适?
  • .Net Core 3.1 解决数据大小限制
  • 【音视频 | opus】opus编码的Ogg封装文件详解
  • 【微信小程序】自定义组件(一)
  • 如何通过一条数字人三维动画宣传片,打造出数字文旅
  • 【MongoDB】索引 - 数组字段的多键索引
  • 2023.11.5 关于 Spring 创建 和 使用
  • 3D目标检测实战 | 图解KITTI数据集评价指标AP R40(附Python实现)
  • 制作一个ros2机器人需要学习的课本(还不全面)
  • Qt OpenGL相机系统
  • 英语语音识别,语言评测,语音打分实践与代码实现