当前位置: 首页 > news >正文

GEE19:基于Landsat8的常见的植被指数逐年获取

植被指数逐年获取

  • 1. 常见的植被指数
    • 1.1 比值植被指数(Ratio vegetation index,RVI)
    • 1.2 归一化植被指数(Normalized Difference Vegetation Index,NDVI)
    • 1.3 增强植被指数(Enhanced Vegetation Index,EVI)
    • 1.4 土壤调节植被指数(Soil Adjusted Vegetation Index,SAVI)
    • 1.5 差值植被指数(Difference Vegetation Index,DVI)
    • 1.6 计算公式
    • 1.7 补充:Landsat的优点
  • 2. GEE code
  • 3. 参考

1. 常见的植被指数

1.1 比值植被指数(Ratio vegetation index,RVI)

  RVI值的范围:0-30+,一般绿色植被区的范围是2-8,无植被覆盖的地面(裸土、人工建筑、水体、植被枯死或严重虫害)的RVI在1附近。
  RVI是绿色植物的敏感参数,可以及时反映出作物 LAI 的变化。植被覆盖度影响 RVI,当植被覆盖度较高时,RVI 对植被十分敏感;当植被覆盖度<50%时,这种敏感性显著降低。

1.2 归一化植被指数(Normalized Difference Vegetation Index,NDVI)

  NDVI可以消除大部分与仪器定标、太阳角、地形、云阴影和大气条件相关辐射照度变化的影响,常用于研究植被生长状态及覆盖度。
  NDVI在LAI值很高,即植被茂密时其灵敏度会降低。负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大;值的范围是 -1 ~ 1,一般绿色植被区的范围是0.2 ~ 0.8。

1.3 增强植被指数(Enhanced Vegetation Index,EVI)

  EVI 加入蓝色波段以增强植被信号,矫正土壤背景和气溶胶散射的影响。EVI常用于LAI值高,即植被茂密区。值的范围是-1~1,一般绿色植被区的范围时0.2 ~ 0.8

1.4 土壤调节植被指数(Soil Adjusted Vegetation Index,SAVI)

  目的是解释背景的光学特征变化并修正NDVI对土壤背景的敏感。与NDVI相比,增加了根据实际情况确定的土壤调节系数L,取值范围0~1。 L=0 时,表示植被覆盖度为零;L=1时,表示土壤背景的影响为零,即植被覆盖度非常高,土壤背景的影响为零,这种情况只有在被树冠浓密的高大树木覆盖的地方才会出现。

1.5 差值植被指数(Difference Vegetation Index,DVI)

  DVI对土壤背景的变化较 RVI 敏感,植被覆盖度高时,对植被的敏感度有所下降,适宜于冬小麦初期的植被覆盖研究。

1.6 计算公式

在这里插入图片描述
在这里插入图片描述

1.7 补充:Landsat的优点

  1. 免费,容易获取!!!白嫖的才是最香的!
  2. 数据覆盖全球,近20年的landsat影像几乎都有,有利于时间序列分析。(Landsat 30米的数据最早可以到1984年)
  3. 空间分辨率30m,以前用MODIS(500m)数据较多,现在Landsat用的多,未来估计用10m的哨兵Sentinel或者更高空间分辨率的数据。
  4. 波段较多

2. GEE code

  获取多种植被主要通过USGS Landsat 8 Level 2, Collection 2, Tier 1提取,数据如下:
在这里插入图片描述

var table = ee.FeatureCollection("users/cduthes1991/boundry/China_province_2019").filter(ee.Filter.eq('provinces','beijing'));
var roi = table.geometry();
Map.addLayer(roi, {'color':'blue'}, 'StudyArea');
Map.centerObject(roi, 6);var year_name = 2014;
var start_date = (year_name) + '-01-01';
var end_date   = (year_name + 1) + '-01-01';
var cloudCover = 20//****************************************************************************************************
//****************************************************************************************************
// indices
function DVI(img) {var red = img.select("red");var nir = img.select("nir");var dvi = img.expression("(nir - red)",{"red": red,"nir": nir});return dvi;
}function RVI(img) {var nir = img.select("nir");var red = img.select("red");var rvi = img.expression("(nir/red)",{"nir": nir,"red": red});return rvi;
}function NDVI(img) {var nir = img.select("nir");var red = img.select("red");var ndvi = img.expression("(nir - red)/(nir + red)",{"nir": nir,"red": red});return ndvi;
}function EVI(img) {var nir = img.select("nir");var red = img.select("red");var blue = img.select("blue");var evi = img.expression("2.5 * (nir - red)/(nir + 6 * red - 7.5 * blue + 1)",{"nir": nir,"red": red,"blue": blue});return evi;
}function SAVI(img) {var nir = img.select("nir");var red = img.select("red");var savi = img.expression("1.5 * (nir - red)/(nir + red + 0.5)",{"nir": nir,"red": red});return savi;
}// cloud
function bandRenameL8(image) {var blue = image.select(['SR_B2']).rename('blue');var green = image.select(['SR_B3']).rename('green');var red = image.select(['SR_B4']).rename('red');var nir = image.select(['SR_B5']).rename('nir');var swir1 = image.select(['SR_B6']).rename('swir1');var swir2 = image.select(['SR_B7']).rename('swir2');var new_image = blue.addBands([green, red, nir, swir1, swir2]);return new_image;
}function applyScaleFactorsL8(image) {var opticalBands = image.select('SR_B.').multiply(0.0000275).add(-0.2);var thermalBands = image.select('ST_B.*').multiply(0.00341802).add(149.0);return image.addBands(opticalBands, null, true).addBands(thermalBands, null, true);
}function cloudmaskL8(image) {// Bits 3 and 5 are cloud shadow and cloud, respectively.var cloudShadowBitMask = (1 << 4);var cloudsBitMask = (1 << 3);// Get the pixel QA band.var qa = image.select('QA_PIXEL');// Both flags should be set to zero, indicating clear conditions.var mask = qa.bitwiseAnd(cloudShadowBitMask).eq(0).and(qa.bitwiseAnd(cloudsBitMask).eq(0));return image.updateMask(mask);
}//****************************************************************************************************
//****************************************************************************************************
for(var i = year_name; i <= 2016; i++){
// get image collection
var l8_col = ee.ImageCollection("LANDSAT/LC08/C02/T1_L2").filterBounds(roi).filterDate(start_date, end_date).filter(ee.Filter.lt('CLOUD_COVER', cloudCover)).map(applyScaleFactorsL8).map(cloudmaskL8).map(bandRenameL8);
print('landsat8', l8_col.size())// combine, mean and calculate
var image = l8_col
print("final image count", l8_col.size(), l8_col)
var final_image = image.mean().clip(roi);
print(final_image) // 6 bands(red,blue,green,nir...)
var image_dvi= DVI(final_image)
var image_rvi = RVI(final_image)
var image_ndvi= NDVI(final_image)
var image_evi= EVI(final_image)
var image_savi= SAVI(final_image)Map.addLayer(final_image, {bands: ["red", "green", "blue"], min:0.0, max:0.25}, "image")var ndwi_palettes = ["ffffff","#f9f9f9","#d8fdf4","#7dd5e9","3d7ede","243ad4","#1c00b8", "#250081"];
var ndvi_palettes = ["#e700d5", "#e60000", "#e69f00", "#dfe200", "#7ebe00", "#00a10c", "#008110"];//Map.addLayer(image_dvi.clip(roi), {min:-1, max:1, palette:ndwi_palettes}, "dvi");
//Map.addLayer(image_rvi.clip(roi), {min:0, max:30, palette:ndwi_palettes}, "rvi");
Map.addLayer(image_ndvi.clip(roi), {min:-0.3, max:1, palette:ndvi_palettes}, "ndvi");
//Map.addLayer(image_evi.clip(roi), {min:-0.3, max:1, palette:ndwi_palettes}, "ndwi");
Map.addLayer(image_savi.clip(roi), {min:-0.3, max:1, palette:ndwi_palettes}, "savi");// export to drive
Export.image.toDrive({image: image_dvi.clip(roi),folder: "LUCC",description: "image_dvi" + i,scale: 30,region: roi,maxPixels: 1e13})
Export.image.toDrive({image: image_rvi.clip(roi),folder: "LUCC",description: "image_rvi" + i,scale: 30,region: roi,maxPixels: 1e13})
Export.image.toDrive({image: image_ndvi.clip(roi),folder: "LUCC",description: "image_ndvi" + i,scale: 30,region: roi,maxPixels: 1e13})
Export.image.toDrive({image: image_evi.clip(roi),folder: "LUCC",description: "image_evi" + i,scale: 30,region: roi,maxPixels: 1e13})
Export.image.toDrive({image: image_savi.clip(roi),folder: "LUCC",description: "image_savi" + i,scale: 30,region: roi,maxPixels: 1e13})
}

研究区:

在这里插入图片描述

NDVI:

在这里插入图片描述
SAVISAVI:

3. 参考

  • 光谱植被指数与水稻叶面积指数相关性的研究
http://www.lryc.cn/news/197521.html

相关文章:

  • Python【多分支实际应用的练习】
  • LeetCode 343. 整数拆分(动态规划)
  • C++对象模型(12)-- 构造函数语义学:构造函数
  • [23] T^3Bench: Benchmarking Current Progress in Text-to-3D Generation
  • linux系统如何定时关机
  • 构建高性能物联网数据平台:EMQX和CnosDB的完整教程
  • 【vim 学习系列文章 11 -- vim filetype | execute | runtimepath 详细介绍】
  • [备忘]WindowsLinux上查看端口被什么进程占用|端口占用
  • 函数的扩展
  • Cypress安装使用
  • 怎么把图片改成jpg格式?
  • [一带一路金砖 2023 CTF]Crypto
  • FPGA【Verilog语法】
  • Flume 整合 Kafka
  • VUE:侧边弹出栏组件,组件中有树状图,搜索框可筛选树状图节点,可收缩
  • 如何使用pytorch定义一个多层感知神经网络模型——拓展到所有模型知识
  • 为什么引入SVG文件,给它定义属性不生效原理分析
  • Integer包装类常用方法和属性
  • 基于Spring boot轻松实现一个多数据源框架
  • vue前端实现打印功能并约束纸张大小---调用浏览器打印功能打印页面部分元素并固定纸张大小
  • 音乐播放器蜂鸣器ROM存储歌曲verilog,代码/视频
  • Arduino Nano 引脚复用分析
  • Go 函数多返回值错误处理与error 类型介绍
  • 数论分块
  • 宏任务与微任务,代码执行顺序
  • 正方形(Squares, ACM/ICPC World Finals 1990, UVa201)rust解法
  • 【算法设计与分析qwl】伪码——顺序检索,插入排序
  • Uniapp路由拦截-自定义路由白名单
  • 在中国可以使用 HubSpot 吗?
  • Java的基础应用