当前位置: 首页 > news >正文

随机误差理论与测量

文章目录

    • 第1节 随机误差的性质和特点
    • 第2节 随机误差的数字特性
      • 标准差的估计
    • 第3节 单次测量结果的精度指标
    • 第4节 多次测量结果的精度指标
      • 算数平均值的分布特性与标准差
      • 算数平均值的置信度
      • 算数平均值的精度指标(常用的有4个)
    • 第5节 非等精度测量

第1节 随机误差的性质和特点

随机误差的基本特点:对称性、单峰性、抵偿性、有界性。
随机误差的分布特性:古典误差理论认为:随机误差服从正态分布。其理论依据:中心极限定理。
正态分布及特性:
在这里插入图片描述
在这里插入图片描述
查分布表时用半边值

第2节 随机误差的数字特性

随机变量的数字特征
数学期望体现位置特征,方差体现分散性指标。
算术平均值(数学期望的估计)
可以用算数平均值作为真值的估计。
解决了有限次等精度测量中,如何估计被测量真值的问题。
在这里插入图片描述
Dx为方差。
在这里插入图片描述
这里的 δ \delta δ 是误差(测量值-真值),而真值是无法得到的,所以要进行标准差的估计方法。

标准差的估计

贝赛尔公式
在这里插入图片描述
注意这里的 σ \sigma σ是带了帽子的。戴帽子的 σ \sigma σ是不带的无偏估计。
Vi表示的是残差(测量值-平均值),所以是可以得到的。
贝赛尔公式估算条件:测量次数n比较大。
标准偏差的其他估算方法
1)别捷尔斯法(Peters)
在这里插入图片描述
2)极差法
在这里插入图片描述
dn可查表得到,与测量次数有关(测量n次就查dn):测量的次数越多,ωn大的概率高,故dn应大。极差法可简单迅速算出标准差,n<10时适用。
3) 最大误差法
在这里插入图片描述
四种估计方法的优缺点对比
① 贝塞尔公式的计算精度较高,但计算麻烦,需要乘方和开方等,其计算速度难于满足快速自动化测量的需要;
② 别捷尔斯公式最早用于前苏联列宁格勒附近的普尔科夫天文台,它的计算速度较快,但计算精度较低,计算误差为贝氏公式的1.07倍;
③ 用极差法计算σ,非常迅速方便,可用来作为校对公式,当n<10时可用来计算σ,此时计算精度高于贝氏公式;
④ 用最大误差法计算σ更为简捷,容易掌握,当n<10时可用最大误差法,计算精度大多高于贝氏公式,尤其是对于破坏性实验(n=1)只能应用最大误差法。

第3节 单次测量结果的精度指标

正态分布的概率积分——误差函数
标准差σ是表征随机误差很重要的一个特征量,可用于描述测量列中各个测得值的误差。
σs可作为表征测量列中每一个测得值误差的参数。
单次测量是总体中的一次抽样,目前各国多采用以下精度指标:
在这里插入图片描述
在这里插入图片描述
在一个测量列中,是以算术平均值作为测量结果:
在这里插入图片描述
因此必须研究算术平均值不可靠的评定标准!

第4节 多次测量结果的精度指标

算数平均值的分布特性与标准差

x ‾ \overline{x} x 作为测量结果比用单次测量结果精度提高了 n \sqrt{n} n 倍!
在这里插入图片描述
在这里插入图片描述

算数平均值的置信度

测量次数多时,查正态分布表
在这里插入图片描述
在这里插入图片描述
测量次数n较少时——t分布求解
在这里插入图片描述
当自由度趋向于无穷大时,t分布就是标准的正态分布。实际上在测量次数足够大(n>20),可以近似用正态分布代替。
在这里插入图片描述
其中自由度V=n-1=4,a=0.05。
t分布在数理统计中称为小子样分布。在精密测量中,测量次数很少有超过20次的,因此,在理论上应按t分布来计算相应的误差限;只有在测量次数较多(n>20)的情况时,或其测量量不甚重要时,才可近似应用正态分布的理论来处理

事实上,当n无限增大时,t分布曲线和正态分布曲线基本重合,即按两个分布理论来处理测量数据,所得的结果差异是极小的。

算数平均值的精度指标(常用的有4个)

在这里插入图片描述

第5节 非等精度测量

什么是非等精度测量
测量条件(人员、方法、测量次数、环境条件等)部分或者全部改变,导致测量的精度和可信赖程度不一样。这种测量称为非等精度测量。
客观上,由于条件限制,所有的测量都是非等精度测量。但是条件差别不大的测量,一般都当成等精度处理。
等精度测量特点:具有同一标准差 σ \sigma σ

非等精度测量的两种情况
(1)用不同的测量次数进行对比测量
(2)用不同精度的仪器进行对比测量:互比核对目的。

“权”的概念和加权平均
权与方差的关系
方差越大,测量结果越不可靠,权应该越小。
权与方差成反比!权表示相对可靠程度,是一个无量纲的数,允许给各组的权数同时增大或者减小若干倍,而比例关系不变。

http://www.lryc.cn/news/194369.html

相关文章:

  • 树莓派4b配置通过smbus2使用LCD灯
  • UPS 原理和故障案例分享
  • Stream流中的 max()和 sorted()方法
  • 云上攻防-云原生篇Docker安全权限环境检测容器逃逸特权模式危险挂载
  • PDE数值解中,为什么要引入弱解(weak solution)的概念?
  • 使用pdfjs实现在线预览pdf
  • 汇编语言基础
  • 格式工厂怎么把两个视频合并在一起
  • 2.MySQL表的操作
  • 网络安全之应急流程
  • [Python进阶] 操纵鼠标:pyuserinput
  • 【LeetCode】每日一题两数之和寻找正序数组的中位数找出字符串中第一个匹配项的下标在排序数组中查找元素的第一个和最后一个位置
  • 与HTTP相关的各种协议
  • 常见的网络攻击手段
  • 学习笔记---超基础+详细+新手的顺序表~~
  • Java高级-CompletableFuture并发编程利器
  • python、java、c++哪一个前景比较好?
  • 【排序算法】详解直接插入排序和希尔排序原理及其性能分析
  • JDK1.8对HashMap的优化、以及通过源码解析1,8扩容机制
  • Linux串口断帧处理
  • springboot集成kafka
  • 近期总结2023.10.16
  • 【EI会议征稿】第二届可再生能源与电气科技国际学术会议(ICREET 2023)
  • 让ChatGPT等模型学会自主思考!开创性技术“自主认知”框架
  • Jmeter脚本参数化和正则匹配
  • vue 请求代理 proxy
  • 使用Spring Boot构建稳定可靠的分布式爬虫系统
  • 分享一个查询OpenAI Chatgpt key余额查询的工具网站
  • 【LeetCode刷题(数据结构与算法)】:二叉树的后序遍历
  • 内网、外网、宽带、带宽、流量、网速之间的区别与联系