深度学习实战:用Keras搭建深度学习网络做手写数字识别
⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️
🐴作者:秋无之地🐴简介:CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作,主要擅长领域有:爬虫、后端、大数据开发、数据分析等。
🐴欢迎小伙伴们点赞👍🏻、收藏⭐️、留言💬、关注🤝,关注必回关
上一篇文章已经跟大家介绍过《深度学习简述》,相信大家对深度学习都有一个基本的认识。下面我讲一下:深度学习实战:用Keras搭建深度学习网络做手写数字识别
一、设定目标
在这篇文章中,我们用 Keras 这个深度学习框架做一个识别手写数字的练习。
今天的学习目标主要有以下的几个方面:
- 进一步了解 CNN 网络。CNN 网络在深度学习网络中应用很广,很多网络都是基于 CNN 网络构建的,你有必要进一步了解 CNN 的网络层次,尤其是关于卷积的原理。
- 初步了解 LeNet 和 AlexNet。它们都是经典的 CNN 网络,我们今天的任务就是认识这些经典的 CNN 网络,这样在接触更深度的 CNN 网络的时候,比如 VGG、GoogleNet 和 ResNet 这些网络的时候,就会更容易理解和使用。
- 对常用的深度学习框架进行对比,包括 Tensorflow、Keras、Caffe、PyTorch、 MXne