当前位置: 首页 > news >正文

【C++设计模式之解释器模式:行为型】分析及示例

简介

解释器模式(Interpreter Pattern)是一种行为型设计模式,它提供了一种解决问题的方法,通过定义语言的文法规则,解释并执行特定的语言表达式。
解释器模式通过使用表达式和解释器,将文法规则中的句子逐个解释执行。它将一些复杂的业务逻辑分解为一系列的简单表达式,通过解析和执行这些表达式来实现业务逻辑的处理。

描述

解释器模式通常用于处理某种特定领域的语言或规则。它将待解析的句子转换为抽象语法树,并按照语法规则逐个解析节点。每个节点都可以表示一个终结符或非终结符,并提供相应的解释方法。

原理

解释器模式的核心原理是将句子解析成为抽象语法树,然后通过遍历和解释节点来执行语义操作。解释器模式通常包含以下角色:

  • 抽象表达式(Abstract Expression):定义了解释器的抽象接口,包含解释方法 interpret()。
  • 终结符表达式(Terminal Expression):表示句子中的终结符(如变量、常量等),实现了解释方法 interpret()。
  • 非终结符表达式(Nonterminal Expression):表示句子中的非终结符(如加法、减法等运算),定义了解释方法 interpret()。

类图

在这里插入图片描述

Context:环境角色(上下文),含有每个解释器所需的一些数据或全局的一些信息。
AbstractExpression:抽象表达式类,声明了抽象的解释操作,所有解释器类都继承或实现该类。
TerminalExpression:终结符表达式类,是AbstractExpression的子类,实现了文法中有关终结符相关的解释操作。
NonTerminalExpression:非终结符表达式,AbstractExpression的子类,该类的功能与终结表达式类相反,文法中所有非终结符由该类进行解释。
Client:客户端测试类。

示例

假设我们需要实现一个简单的数学表达式解析器,可以计算表达式的值。表达式可以包含整数、加法和减法操作。

在下面的示例中,我们定义了抽象表达式类 Expression 和具体的终结符表达式类 IntegerExpression,以及具体的非终结符表达式类 AddExpression 和 SubtractExpression。程序通过解析句子中的各个表达式,并执行相应的操作。

#include <iostream>
#include <string>
#include <stack>// 抽象表达式类
class Expression {
public:virtual int interpret() 0;
};// 终结符表达式类
class IntegerExpression : public Expression {
private:int value;public:IntegerExpression(int value) : value(value) {}int interpret() {return value;}
};// 非终结符表达式类
class AddExpression : public Expression {
private:Expression* left;Expression* right;public:AddExpression(Expression* left, Expression* right): left(left), right(right) {}int interpret() {return left->interpret() + right->interpret();}
};class Subtract : public Expression {
privateExpression* left;Expression* right;public:SubtractExpression(Expression* left, Expression* right): left(left), right(right) {}int interpret() {return left->interpret() - right->interpret();}
};// 解析器
class Parser {
public:static Expression* parse(const std::string& input) {std::stack<Expression*> expressionStack;int pos = 0;while (pos < input.size()) {if (isdigit(input[pos])) {int value = 0;while (pos < input.size() && isdigit(input[pos])) {value = value * 10 + (input[pos] - 0);pos++;}expressionStack.push(new IntegerExpression(value));} else if (input[pos] == '+') {Expression* right = expressionStack.top();expressionStack.pop();Expression* left = expressionStack.top();expressionStack.pop();expressionStack.push(new AddExpression(left, right));pos++;} else if (input[pos] == '-') {Expression* right = expressionStack.top();expressionStack.pop();Expression* left = expressionStack.top();expressionStack.pop();expressionStack.push(new SubtractExpression(left, right));pos++;} else {pos++;}}return expressionStack.top();}
};int main() {std::string input = "5+2-1";Expression* expression = Parser::parse(input);int result = expression->interpret();std::cout << "Result: " << result << std::endl;delete expression;return 0;
}

输出结果

Result: 6

解释

在上述示例中,使用解释器模式实现了一个简单的数学表达式解析器。程序首先将输入的字符串表达式解析成为抽象语法树,并通过遍历和解释节点来执行计算操作。最后输出计算的结果。

结论

解释器模式可以用于处理复杂的业务规则和语言解析。它可以将复杂的业务逻辑分解为一系列的简单表达式进行处理,从而提高代码的可读性和维护性。

应用场景

解释器模式适用于以下情况:

  • 当业务逻辑较为复杂,且可以被分解为一系列简单表达式时。
  • 当需要构建一种特定领域的语言或解析器时。
  • 当需要灵活地支持变化的业务规则或语法规则时。
http://www.lryc.cn/news/187185.html

相关文章:

  • 35 WEB漏洞-逻辑越权之找回机制及接口安全
  • 黑豹程序员-架构师学习路线图-百科:JSON替代XML
  • 考研人考研魂——英语单词篇(20231009)
  • 【数据结构】HashSet的底层数据结构
  • 数据结构与算法(七)--使用链表实现栈
  • 分布式事务详解
  • 车载通信架构 —— DDS协议介绍
  • nginx根据不同的客户端设备进行转发请求——筑梦之路
  • 增强LLM:使用搜索引擎缓解大模型幻觉问题
  • WPF向Avalonia迁移(一、一些通用迁移项目)
  • lua学习笔记
  • 修改 ModelScope 默认缓存路径
  • 【ES实战】索引别名的使用说明
  • QT信号与槽机制 和 常用控件介绍
  • 【css-banner图片自适应】
  • 【k8s管理操作】
  • 【java基础学习】之DOS命令
  • 学习记录——StyleGAN2+SA-UNet
  • JVM222
  • C语言 指针
  • YOLOv8血细胞检测(7):小目标大目标一网打尽,轻骨干重Neck的轻量级GFPN | 阿里ICLR2022 GiraffeDet
  • 广度优先(BFS)(例子:迷宫)
  • 【安卓源码】安卓Watchdog 机制
  • inscode连接不上gpu,持续8小时,为了数据不丢失续费了6小时,我只想知道什么时候可以连接
  • QT位置相关函数
  • vulnhub靶场 Kioptrix-level-1
  • 全网最细,真实企业性能测试落地实施,一文带你快速打通...
  • 三十一、【进阶】B+树的演变过程
  • 算法通过村第十三关-术数|白银笔记|术数高频问题
  • Java 线程的生命周期