当前位置: 首页 > news >正文

大厂秋招真题【DP】米哈游20230924秋招T2-米小游与魔法少女-奇运

米哈游20230924秋招T2-米小游与魔法少女-奇运

题目描述与示例

题目描述

米小游都快保底了还没抽到希儿,好生气哦!只能打会活动再拿点水晶。

米小游和世界第一可爱的魔法少女 TeRiRi 正在打 BOSS,BOSS 的血量为h,当 BOSS 血量小于等于0时,BOSS 死亡。TeRiRi 有一套牌,在一轮中,她会按顺序一张一张的将卡牌打出,套牌中有两种卡牌:

  1. 时来运转:获得x幸运币
  2. 幸运一掷:造成x点伤害,并投掷所有幸运币,造成等于所有幸运币掷出的点数之和的伤害。

幸运币可以等概率的投掷出1∼6之间的点数。 (所以为什么不叫骰子呢?)

米小游想知道,TeRiRi 的套牌在一轮内击杀 BOSS 的概率。

输入描述

第一行输入两个整数n (1≤n≤100)h (1≤h≤10^9),分别表示卡牌张数和 BOSS 血量。

接下来n行,每行首先输入两个整数t (1≤t≤2)x (1≤x≤10)t1表示卡牌为时来运转,t2表示卡牌为幸运一掷。

输出描述

输出一个实数表示答案,你的答案与标准答案的误差不超过10^−4都被认为是正确答案。

示例一

输入

2 5
1 1
2 1

输出

0.5

说明

幸运币掷出4及以上的概率为0.5,再加上1点固定伤害,即可击杀BOSS。

示例二

输入

3 1145
1 4
1 9
1 9

输出

0

说明

无论如何都无法击杀BOSS。

解题思路

对于固定顺序的套牌,投掷幸运币的数量是固定的。这里要注意的是,由于时来运转之后必须接上幸运一掷才能将幸运币打出造成伤害,所以如果最后的若干张连续的卡牌是时来运转,这些最后获得的幸运币也是无法造成伤害的。

我们将造成的伤害分为两部分,固定伤害和随机伤害,前者为打出y个幸运币必定造成的z点伤害,后者为y个幸运币掷出点数和的伤害。

假设整套卡牌一共投掷了y个幸运币,造成的固定伤害z点,如果想要击杀BOSS,随机伤害必须至少达到h-z点才可以。当然,如果h-z≤0,则必定可以击杀BOSS。

问题就转换为,投掷出y个幸运币,点数总和超过h-z的概率是多少?

由于每一个幸运币都是独立的,在掷出第i个幸运币时,其结果是从掷出第i-1个幸运币时得到的各种结果转移得到的,因此我们可以使用动态规划来解决该问题。我们考虑动态规划三部曲:

  1. dp数组的含义是什么?
  • dp数组是一个长度为(y+1)×(h-z+1)的二维矩阵,dp[i][j]表示掷出第i个幸运币时,有多大的概率可以取得和为j的结果,即造成和为j的伤害。
  • 特别地,由于只需要判断伤害之和大于等于h-z的概率,而不用关心具体的分布,dp数组内层的第h-z个元素,即dp[i][h-z],表示求和大于等于h-z的概率。
  1. 动态转移方程是什么?
  • 由于幸运币掷出点数1-6是等概率的,故对于某一个特定的dp[i-1][j],在掷出第i个幸运币时,dp[i-1][j]的结果将等概率地转换到dp[i][j+1]dp[i][j+2]dp[i][j+3]dp[i][j+4]dp[i][j+5]dp[i][j+6],即每一个状态都可以取得1/6的转移。
  • 另外,如果j+k之后超过了h-z,则将直接获得(7-k)/6 * dp[i-1][j]的概率。
for i in range(1, y+1):for j in range(i-1, h-z+1):for k in range(1, 7):if j + k >= h - z:dp[i][h-z] += (7-k)/6 * dp[i-1][j]breakelse:dp[i][j+k] += 1/6 * dp[i-1][j]
  1. dp数组如何初始化?
  • 考虑不投掷任何幸运币的情况,那么只有一种情况,也就是在投掷0个幸运币的时候获得求和为0的概率为恒定1。故初始化dp[0][0] = 1
dp = [[0] * (h-z+1) for _ in range(y+1)]
dp[0][0] = 1

考虑完上述问题后,代码其实呼之欲出了。

代码

Python

# 题目:【DP】米哈游2023秋招-米小游与魔法少女-奇运
# 作者:闭着眼睛学数理化
# 算法:DP
# 代码有看不懂的地方请直接在群上提问y = 0       # 掷出幸运币的总个数
z = 0       # 全部造成的固定伤害
x_temp = 0  # 时来运转获得的幸运币n, h = map(int, input().split())
for _ in range(n):t, x = map(int, input().split())# 时来运转if t == 1:x_temp += x# 幸运一掷else:y += x_tempx_temp = 0z += x# 如果固定伤害已经大于h,直接输出1
if h - z <= 0:print(1)
# 否则才需要进行dp过程
else:# 初始化dp数组# dp[i][j]表示掷出了i个幸运币时,# 有多大的概率可以取得和为j的结果,即造成和为j的伤害。dp = [[0] * (h-z+1) for _ in range(y+1)]dp[0][0] = 1# 考虑每一个幸运币for i in range(1, y+1):# 对于每一个幸运币考虑打出i-1个硬币后的# 每一种求和结果的概率# 注意,由于已经掷出了i-1个幸运币# 那么求和结果至少为i-1,因为每个幸运币点数至少为1点# 因此j遍历时起点可以从i-1开始for j in range(i-1, h-z+1):# 如果求和j尚未在上一次投掷中取得,# 则可以直接考虑下一个幸运币if dp[i-1][j] == 0:break# 遍历掷出六种不同点数k的情况,# 当前点数则可以取得j+kfor k in range(1, 7):# 如果当前点数j+k超过了击杀所需点数# 则更新dp[i][h-z]# 为dp[i-1][j]对应的概率乘以(7-k)/6if j + k >= h - z:dp[i][h-z] += (7-k)/6 * dp[i-1][j]break# 如果当前点数j+k尚未超过击杀所需点数# 则其概率由dp[i-1][j]六等分后转移得到else:dp[i][j+k] += 1/6 * dp[i-1][j]# 输出最后一行的最后一个元素# 表示打出第y个幸运币后,造成伤害大于等于h-z点的概率print(dp[y][h-z])

Java

import java.util.Scanner;public class Main {public static void main(String[] args) {int y = 0;            // 掷出幸运币的总个数int z = 0;            // 全部造成的固定伤害int x_temp = 0;       // 时来运转获得的幸运币Scanner scanner = new Scanner(System.in);int n = scanner.nextInt();int h = scanner.nextInt();for (int i = 0; i < n; i++) {int t = scanner.nextInt();int x = scanner.nextInt();// 时来运转if (t == 1) {x_temp += x;}// 幸运一掷else {y += x_temp;x_temp = 0;z += x;}}// 如果固定伤害已经大于h,直接输出1if (h - z < 0) {System.out.println("1");}// 否则才需要进行dp过程else {// 初始化dp数组// dp[i][j]表示掷出了i个幸运币时,// 有多大的概率可以取得和为j的结果,即造成和为j的伤害。double[][] dp = new double[y + 1][h - z + 1];dp[0][0] = 1.0;// 考虑每一个幸运币for (int i = 1; i <= y; i++) {// 对于每一个幸运币考虑打出i-1个硬币后的// 每一种求和结果的概率// 注意,由于已经掷出了i-1个幸运币// 那么求和结果至少为i-1,因为每个幸运币点数至少为1点// 因此j遍历时起点可以从i-1开始for (int j = i - 1; j <= h - z; j++) {// 如果求和j尚未在上一次投掷中取得,// 则可以直接考虑下一个幸运币if (dp[i - 1][j] == 0) {break;}// 遍历掷出六种不同点数k的情况,// 当前点数则可以取得j+kfor (int k = 1; k <= 6; k++) {// 如果当前点数j+k超过了击杀所需点数// 则更新dp[i][h-z]// 为dp[i-1][j]对应的概率乘以(7-k)/6if (j + k >= h - z) {dp[i][h - z] += (7 - k) / 6.0 * dp[i - 1][j];break;}// 如果当前点数j+k尚未超过击杀所需点数// 则其概率由dp[i-1][j]六等分后转移得到else {dp[i][j + k] += 1.0 / 6.0 * dp[i - 1][j];}}}}// 输出最后一行的最后一个元素// 表示打出第n个幸运币后,造成伤害大于等于h-z点的概率System.out.println(String.format("%.5f", dp[y][h - z]));}}
}

C++

#include <iostream>
#include <vector>
#include <iomanip>using namespace std;int main() {int y = 0;            // 掷出幸运币的总个数int z = 0;            // 全部造成的固定伤害int x_temp = 0;       // 时来运转获得的幸运币int n, h;cin >> n >> h;for (int i = 0; i < n; i++) {int t, x;cin >> t >> x;// 时来运转if (t == 1) {x_temp += x;}// 幸运一掷else {y += x_temp;x_temp = 0;z += x;}}// 如果固定伤害已经大于h,直接输出1if (h - z < 0) {cout << fixed << setprecision(10) << 1 << endl;}// 否则才需要进行dp过程else {// 初始化dp数组// dp[i][j]表示掷出了i个幸运币时,// 有多大的概率可以取得和为j的结果,即造成和为j的伤害。vector<vector<double>> dp(y + 1, vector<double>(h - z + 1, 0));dp[0][0] = 1.0;// 考虑每一个幸运币for (int i = 1; i <= y; i++) {// 对于每一个幸运币考虑打出i-1个硬币后的// 每一种求和结果的概率// 注意,由于已经掷出了i-1个幸运币// 那么求和结果至少为i-1,因为每个幸运币点数至少为1点// 因此j遍历时起点可以从i-1开始for (int j = i - 1; j <= h - z; j++) {// 如果求和j尚未在上一次投掷中取得,// 则可以直接考虑下一个幸运币if (dp[i - 1][j] == 0) {break;}// 遍历掷出六种不同点数k的情况,// 当前点数则可以取得j+kfor (int k = 1; k <= 6; k++) {// 如果当前点数j+k超过了击杀所需点数// 则更新dp[i][h-z]// 为dp[i-1][j]对应的概率乘以(7-k)/6if (j + k >= h - z) {dp[i][h - z] += (7 - k) / 6.0 * dp[i - 1][j];break;}// 如果当前点数j+k尚未超过击杀所需点数// 则其概率由dp[i-1][j]六等分后转移得到else {dp[i][j + k] += 1.0 / 6.0 * dp[i - 1][j];}}}}// 输出最后一行的最后一个元素// 表示打出第n个幸运币后,造成伤害大于等于h-z点的概率cout << fixed << setprecision(5) << dp[y][h - z] << endl;}return 0;
}

时空复杂度

时间复杂度:O(yh)。其中y为投掷出的幸运币的总数,h为BOSS总血量,dp过程需要进行双重循环。

空间复杂度:O(yh)dp数组所占空间。如果使用滚动dp,空间复杂度可以降低到O(h)


华为OD算法/大厂面试高频题算法练习冲刺训练

  • 华为OD算法/大厂面试高频题算法冲刺训练目前开始常态化报名!目前已服务100+同学成功上岸!

  • 课程讲师为全网50w+粉丝编程博主@吴师兄学算法 以及小红书头部编程博主@闭着眼睛学数理化

  • 每期人数维持在20人内,保证能够最大限度地满足到每一个同学的需求,达到和1v1同样的学习效果!

  • 60+天陪伴式学习,40+直播课时,300+动画图解视频,300+LeetCode经典题,200+华为OD真题/大厂真题,还有简历修改、模拟面试、专属HR对接将为你解锁

  • 可上全网独家的欧弟OJ系统练习华子OD、大厂真题

  • 可查看链接 OD算法冲刺训练课程表 & OD真题汇总(持续更新)

  • 绿色聊天软件戳 od1336了解更多

http://www.lryc.cn/news/184778.html

相关文章:

  • LVS+Keepalived 高可用集群负载均衡
  • Qt QList类和QLinkedList类 详解
  • Mac安装GYM遇到的一些坑
  • 【高级rabbitmq】
  • 数百个下载能够传播 Rootkit 的恶意 NPM 软件包
  • SpringBoot的error用全局异常去处理
  • MyBatisPlus(十一)包含查询:in
  • Linux命令定位与查找:which、whereis和find的用法详解
  • LeetCode 面试题 17.10. Find Majority Element LCCI【摩尔投票法】简单
  • 多校联测11 模板题
  • Linux SSH连接远程服务器(免密登录、scp和sftp传输文件)
  • 从0开始python学习-30.selenium frame子页面切换
  • asp.net core 远程调试
  • Java spring boot 一次调用多个请求
  • DRM全解析 —— CRTC详解(4)
  • 六个为Rust构建的IDE
  • 25 Python的collections模块
  • JEPG Encoder IP verilog设计及实现
  • yolov5 web端部署进行图片和视频检测
  • 嵌入式养成计划-34--函数库
  • PM864AK01-eA 3BSE018161R2 工业人工智能供应链先驱
  • 参与现场问题解决总结(Kafka、Hbase)
  • 基于PSD-ML算法的语音增强算法matlab仿真
  • 【1++的Linux】之文件(一)
  • Kafka 高可用
  • 关于分布式操作系统
  • Pytorch使用DataLoader, num_workers!=0时的内存泄露
  • chromedriver下载与安装方法
  • 数据库查询详解
  • c++视觉ROI 区域和ROI 区域图像叠加