当前位置: 首页 > news >正文

基于生物地理学优化的BP神经网络(分类应用) - 附代码

基于生物地理学优化的BP神经网络(分类应用) - 附代码

文章目录

  • 基于生物地理学优化的BP神经网络(分类应用) - 附代码
    • 1.鸢尾花iris数据介绍
    • 2.数据集整理
    • 3.生物地理学优化BP神经网络
      • 3.1 BP神经网络参数设置
      • 3.2 生物地理学算法应用
    • 4.测试结果:
    • 5.Matlab代码

摘要:本文主要介绍如何用生物地理学算法优化BP神经网络,利用鸢尾花数据,做一个简单的讲解。

1.鸢尾花iris数据介绍

本案例利用matlab公用的iris鸢尾花数据,作为测试数据,iris数据是特征为4维,类别为3个类别。数据格式如下:

特征1特征2特征3类别
单组iris数据5.32.11.21

3种类别用1,2,3表示。

2.数据集整理

iris数据总共包含150组数据,将其分为训练集105组,测试集45组。如下表所示:

训练集(组)测试集(组)总数据(组)
10545150

类别数据处理:原始数据类别用1,2,3表示为了方便神经网络训练,类别1,2,3分别用1,0,0;0,1,0;0,0,1表示。

当进行数据训练对所有输入特征数据均进行归一化处理。

3.生物地理学优化BP神经网络

3.1 BP神经网络参数设置

通常而言,利用智能算法一般优化BP神经网络的初始权值和阈值来改善BP神经网络的性能。本案例基于iris数据,由于iris数据维度不高,采用简单的BP神经网络。神经网络参数如下:

神经网络结构

图1.神经网络结构

神经网络参数如下:

%创建神经网络
inputnum = 4;     %inputnum  输入层节点数 4维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 3;     %outputnum  隐含层节点数
net = newff( minmax(input) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'traingdx' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;

3.2 生物地理学算法应用

生物地理学算法原理请参考:https://blog.csdn.net/u011835903/article/details/108665883

生物地理学算法的参数设置为:

popsize = 10;%种群数量Max_iteration = 15;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:4*10 = 40; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:3*10 = 30;即hiddenum * outputnum;

第二层权值数量为:3;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 83;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( T r a i n D a t a E r r o r R a t e + T e s t D a t a E r r o r R a t e ) fitness = argmin(TrainDataErrorRate + TestDataErrorRate) fitness=argmin(TrainDataErrorRate+TestDataErrorRate)
其中TrainDataErrorRate,TestDataErrorRate分别为训练集和测试集的错误分类率。适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从生物地理学算法的收敛曲线可以看到,整体误差是不断下降的,说明生物地理学算法起到了优化的作用:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.Matlab代码

http://www.lryc.cn/news/184174.html

相关文章:

  • 第二证券:买基金1w一个月能赚多少?
  • 蓝桥杯每日一题2023.10.7
  • Linux 系统为何产生大量的 core 文件?
  • Web_python_template_injection SSTI printer方法
  • TCP/IP网络江湖——江湖导航(网络层上篇)
  • 数据结构——AVL树(详解 + C++模拟实现)
  • redis 雪崩,穿透,击穿及解决方案
  • Flutter环境搭建及新建项目
  • 【面试题精讲】深拷贝和浅拷贝区别了解吗?什么是引用拷贝?
  • CentOS7.9中使用packstack安装train版本
  • mfw git泄露构造闭合
  • UE5修改导航网格的参数
  • 郁金香2021年游戏辅助技术中级班(七)
  • 【网络】路由器和交换机的区别
  • SQL的CASE WHEN函数、CAST函数、CONVERT() 函数、COALESCE()函数、DATEDIFF()函数
  • 前后端分离计算机毕设项目之基于springboot+vue的房屋租赁系统《内含源码+文档+部署教程》
  • 《Spring框架前世今生》
  • 基于树种优化的BP神经网络(分类应用) - 附代码
  • 纳百川冲刺创业板上市:计划募资约8亿元,宁德时代为主要合作方
  • light client轻节点简介
  • 1500*B. Zero Array(贪心数学找规律)
  • java Spring Boot整合jwt实现token生成并验证效果
  • 基础-MVP图像处理-仿射变换
  • Linux嵌入式学习之Ubuntu入门(六)shell脚本详解
  • 学习完C++ 并发编程后 手写线程池 最简单的线程池
  • 【Overload游戏引擎分析】编辑器对象鼠标拾取原理
  • 【Spring内容进阶 | 第三篇】AOP进阶内容
  • 华为云ModelArts:引领AI艺术创作的未来,让人人都可以成为“艺术家”!
  • Elasticsearch:如何从 Elasticsearch 集群中删除数据节点
  • 长假回归,回顾一下所有的电商API接口