当前位置: 首页 > news >正文

十天学完基础数据结构-第九天(堆(Heap))

在这里插入图片描述

堆的基本概念

是一种特殊的树形数据结构,通常用于实现优先级队列。堆具有以下两个主要特点:

  1. 父节点的值始终大于或等于其子节点的值(最大堆),或者父节点的值始终小于或等于其子节点的值(最小堆)

  2. 堆是一棵完全二叉树,这意味着所有层级除了最后一层都是完全填满的,最后一层从左到右填充。

最大堆和最小堆的定义

  • 最大堆(Max Heap):在最大堆中,父节点的值始终大于或等于其子节点的值,这意味着根节点是堆中的最大元素。

  • 最小堆(Min Heap):在最小堆中,父节点的值始终小于或等于其子节点的值,这意味着根节点是堆中的最小元素。

堆的常见操作

堆支持一些常见的操作,包括:

  • 插入(Insertion):将新元素插入堆中,然后重新调整堆,以维护堆的性质。

  • 删除(Deletion):删除堆中的根节点,然后重新调整堆,以维护堆的性质。

  • 堆排序(Heap Sort):使用堆进行排序,将堆顶元素(最大或最小元素)与最后一个元素交换,然后减小堆的大小,并重新调整堆,重复此过程直到排序完成。

任务

堆在许多算法中都有广泛应用,包括Dijkstra算法、优先级队列等。掌握堆排序算法,这是一种高效的排序算法。

示例代码 - 使用C++创建最大堆和进行堆排序:

#include <iostream>
#include <vector>
#include <algorithm>class MaxHeap {
public:MaxHeap() {}// 插入元素void insert(int value) {heap.push_back(value);int index = heap.size() - 1;heapifyUp(index);}// 删除最大元素void removeMax() {if (isEmpty()) {return;}std::swap(heap[0], heap.back());heap.pop_back();heapifyDown(0);}// 堆排序void heapSort() {int n = heap.size();for (int i = n / 2 - 1; i >= 0; i--) {heapifyDown(i);}for (int i = n - 1; i > 0; i--) {std::swap(heap[0], heap[i]);heapifyDown(0, i);}}// 判断堆是否为空bool isEmpty() {return heap.empty();}private:std::vector<int> heap;void heapifyUp(int index) {while (index > 0) {int parent = (index - 1) / 2;if (heap[index] <= heap[parent]) {break;}std::swap(heap[index], heap[parent]);index = parent;}}void heapifyDown(int index, int size = -1) {if (size == -1) {size = heap.size();}while (true) {int leftChild = 2 * index + 1;int rightChild = 2 * index + 2;int largest = index;if (leftChild < size && heap[leftChild] > heap[largest]) {largest = leftChild;}if (rightChild < size && heap[rightChild] > heap[largest]) {largest = rightChild;}if (largest == index) {break;}std::swap(heap[index], heap[largest]);index = largest;}}
};int main() {MaxHeap maxHeap;maxHeap.insert(5);maxHeap.insert(10);maxHeap.insert(3);maxHeap.insert(8);maxHeap.insert(1);std::cout << "堆排序前:";for (int num : maxHeap) {std::cout << num << " ";}maxHeap.heapSort();std::cout << "\n堆排序后:";for (int num : maxHeap) {std::cout << num << " ";}return 0;
}

练习题

  1. 解释堆的基本概念中的最大堆和最小堆的定义。

  2. 描述堆排序的步骤。

  3. 为什么堆可以用于高效的优先级队列实现?

  4. 在给定的一组元素中,如何创建一个最大堆?使用C++编写相应的代码。

  5. 在给定的一组元素中,如何使用堆排序进行排序?使用C++

解释堆的基本概念中的最大堆和最小堆的定义。

  • 最大堆(Max Heap):在最大堆中,每个父节点的值都大于或等于其子节点的值。这意味着根节点包含堆中的最大元素。

  • 最小堆(Min Heap):在最小堆中,每个父节点的值都小于或等于其子节点的值。这意味着根节点包含堆中的最小元素。

描述堆排序的步骤。

堆排序是一种原地、稳定的排序算法,它的步骤如下:

  • 构建一个最大堆或最小堆,将数组视为堆。

  • 不断从堆顶(最大值或最小值)移除元素,并将其放入已排序部分的末尾。

  • 重复第二步,直到堆为空。

这个过程保证了每次移除的元素都是当前堆中的最大(最小)值,因此最终得到一个有序的数组。

为什么堆可以用于高效的优先级队列实现?

堆可以用于高效的优先级队列实现,因为堆的结构允许我们快速找到并删除最大(最小)元素,以及迅速插入新元素。这在许多算法和数据结构中都非常有用,如Dijkstra算法、Prim算法、任务调度等。堆的时间复杂度为O(log n),其中n是堆的大小,这使得优先级队列的操作非常高效。

在给定的一组元素中,如何创建一个最大堆?使用C++编写相应的代码。

创建最大堆的关键是从数组构建一个满足最大堆性质的堆。以下是使用C++创建最大堆的示例代码:

#include <iostream>
#include <vector>void maxHeapify(std::vector<int>& arr, int size, int i) {int largest = i;int left = 2 * i + 1;int right = 2 * i + 2;if (left < size && arr[left] > arr[largest]) {largest = left;}if (right < size && arr[right] > arr[largest]) {largest = right;}if (largest != i) {std::swap(arr[i], arr[largest]);maxHeapify(arr, size, largest);}
}void buildMaxHeap(std::vector<int>& arr) {int size = arr.size();for (int i = size / 2 - 1; i >= 0; i--) {maxHeapify(arr, size, i);}
}int main() {std::vector<int> arr = {4, 10, 3, 5, 1};int size = arr.size();buildMaxHeap(arr);std::cout << "最大堆:";for (int num : arr) {std::cout << num << " ";}return 0;
}

运行结果:在这里插入图片描述

在给定的一组元素中,如何使用堆排序进行排序?使用C++编写相应的代码。

堆排序的关键是将堆顶元素与数组末尾元素交换,然后减小堆的大小并重新调整堆。以下是使用C++进行堆排序的示例代码:

#include <iostream>
#include <vector>void maxHeapify(std::vector<int>& arr, int size, int i) {int largest = i;int left = 2 * i + 1;int right = 2 * i + 2;if (left < size && arr[left] > arr[largest]) {largest = left;}if (right < size && arr[right] > arr[largest]) {largest = right;}if (largest != i) {std::swap(arr[i], arr[largest]);maxHeapify(arr, size, largest);}
}void heapSort(std::vector<int>& arr) {int size = arr.size();for (int i = size / 2 - 1; i >= 0; i--) {maxHeapify(arr, size, i);}for (int i = size - 1; i > 0; i--) {std::swap(arr[0], arr[i]);maxHeapify(arr, i, 0);}
}int main() {std::vector<int> arr = {4, 10, 3, 5, 1};int size = arr.size();heapSort(arr);std::cout << "堆排序结果:";for (int num : arr) {std::cout << num << " ";}return 0;
}

运行结果:
在这里插入图片描述

http://www.lryc.cn/news/183270.html

相关文章:

  • vertx的学习总结7之用kotlin 与vertx搞一个简单的http
  • golang学习笔记(二):链路追踪
  • git提交代码实际操作
  • TF坐标变换
  • 如何进行网络编程和套接字操作?
  • 在Spark中集成和使用Hudi
  • 力扣第226翻转二叉数 c++三种方法 +注释
  • React项目部署 - Nginx配置
  • 【Vue3】定义全局变量和全局函数
  • 【Pandas】Apply自定义行数
  • C#,数值计算——完全VEGAS编码的蒙特·卡洛计算方法与源程序
  • 纯css实现3D鼠标跟随倾斜
  • Pandas数据结构
  • systemverilog function的一点小case
  • 微服务的初步使用
  • 【2023年11月第四版教材】第18章《项目绩效域》(合集篇)
  • Android 11.0 mt6771新增分区功能实现三
  • 计算机网络——计算机网络的性能指标(上)-速率、带宽、吞吐量、时延
  • 每日一题 518零钱兑换2(完全背包)
  • Linux shell编程学习笔记8:使用字符串
  • 【Spring笔记03】Spring依赖注入各种数据类型
  • 2023计算机保研——双非上岸酒吧舞
  • 《计算机视觉中的多视图几何》笔记(13)
  • H5移动端购物商城系统源码 小型商城全新简洁风格全新UI 支持易支付接口
  • 全志ARM926 Melis2.0系统的开发指引⑤
  • 【AI视野·今日Robot 机器人论文速览 第四十七期】Wed, 4 Oct 2023
  • GPX可视化工具 GPX航迹预览工具
  • 学信息系统项目管理师第4版系列18_采购管理
  • 标准化数据模型
  • linux平台源码编译ffmpeg