当前位置: 首页 > news >正文

想要精通算法和SQL的成长之路 - 并查集的运用和案例(省份数量)

想要精通算法和SQL的成长之路 - 并查集的运用

  • 前言
  • 一. 并查集的使用和模板
    • 1.1 初始化
    • 1.2 find 查找函数
    • 1.3 union 合并集合
    • 1.4 connected 判断相连性
    • 1.5 完整代码
  • 二. 运用案例 - 省份数量

前言

想要精通算法和SQL的成长之路 - 系列导航

一. 并查集的使用和模板

先说一下并查集的相关知识点:

  • 含义:并查集,用于维护一组不相交的集合,支持合并两个集合和查询某个元素所属的集合。
  • 用途:解决图论、连通性问题和动态连通性等问题。

通俗一点,可以使用并查集的算法题目有哪些特征?

  • 需要将n个不同的元素划分为不相交的集合。
  • 开始的时候,每个元素自行成为一个集合,然后需要根据一定的顺序进行 合并
  • 同时还需要 查询 某个元素是否属于哪个集合。

因此并查集的基本操作可以包含两个:

  • 合并:将两个不相交的集合合并成一个集合。(将其中一个集合的根节点连接到另一个集合的根节点上)
  • 查找:根据某个元素,寻找到它所在集合的根节点。

1.1 初始化

首先我们考虑下,并查集里面需要有哪些数据结构:

  • 需要一个parent[]数组,用来存储每个元素对应的根节点。
  • 再来一个rank[]数组,代表以每个元素作为根节点,其所在集合的大小。即代表某个集合的深度。
  • 再来一个sum字段,代表当前的集合个数。
public class UnionFind {/*** 表示节点i的父节点*/private int[] parent;/*** 表示以节点i为根节点的子树的深度,初始时每个节点的深度都为0*/private int[] rank;private int sum;public UnionFind(int n) {parent = new int[n];rank = new int[n];// 初始时每个节点的父节点都是它自己for (int i = 0; i < n; i++) {parent[i] = i;}sum = n;}
}

1.2 find 查找函数

特征:

  • 入参:元素x
  • 要做的事情:不断地向上递归寻找这个x的根节点。
  • 递归终止条件:找到根节点。(根节点和元素本身一致)

代码如下:

public int find(int x) {while (x != parent[x]) {x = parent[x];}return x;
}

1.3 union 合并集合

特征:

  • 入参:元素xy
  • 要做的事情:分别找到这两个元素的根节点:rootXrootY
  • 如果俩元素的根节点是同一个,说明他们在一个集合当中,不需要任何操作。
  • 倘若两个元素的根节点不一样,根据两个集合的深度来判断。将深度小的那个集合,合并到深度大的集合中。同时更新对应的根节点和深度大小。

除此之外,我们还可以写一个简单的函数,用来判断两个元素是否处于同一个集合当中(或者是是否相连)

public void union(int x, int y) {int rootX = find(x);int rootY = find(y);// 如果两个元素的根节点一致,不需要合并if (rootX == rootY) {return;}// 如果根节点 rootX 的深度 > rootY。if (rank[rootX] > rank[rootY]) {// 那么将以rootY作为根节点的集合加入到rootX对应的集合当中rank[rootX] += rank[rootY];// 同时改变rootY的根节点,指向rootX。parent[rootY] = rootX;} else {// 反之rank[rootY] += rank[rootX];parent[rootX] = rootY;}
}

1.4 connected 判断相连性

/*** 判断两个节点是否在同一个集合中
*/
public boolean connected(int x, int y) {return find(x) == find(y);
}

1.5 完整代码

/*** @author Zong0915* @date 2023/10/4 下午2:52*/
public class UnionFind {/*** 表示节点i的父节点*/private int[] parent;/*** 表示以节点i为根节点的子树的深度,初始时每个节点的深度都为0*/private int[] rank;private int sum;public UnionFind(int n) {parent = new int[n];rank = new int[n];// 初始时每个节点的父节点都是它自己for (int i = 0; i < n; i++) {parent[i] = i;}sum = n;}public int find(int x) {while (x != parent[x]) {x = parent[x];}return x;}public void union(int x, int y) {int rootX = find(x);int rootY = find(y);// 如果两个元素的根节点一致,不需要合并if (rootX == rootY) {return;}// 如果根节点 rootX 的深度 > rootY。if (rank[rootX] > rank[rootY]) {// 那么将以rootY作为根节点的集合加入到rootX对应的集合当中rank[rootX] += rank[rootY];// 同时改变rootY的根节点,指向rootX。parent[rootY] = rootX;} else {// 反之rank[rootY] += rank[rootX];parent[rootX] = rootY;}}/*** 判断两个节点是否在同一个集合中*/public boolean connected(int x, int y) {return find(x) == find(y);}
}

二. 运用案例 - 省份数量

原题链接
在这里插入图片描述
我们在并查集模板的基础上进行改造:

class UnionFind {private int[] rank;// 每个省份具有的城市数量private int[] parent;// 每个城市对应的根节点(省份)private int sum;// 省份的数量public UnionFind(int[][] isConnected) {int len = isConnected.length;// 初始化,省份数量和提供的城市数量一致sum = len;// 每个集合具有的城市数量为1rank = new int[len];parent = new int[len];Arrays.fill(rank, 1);// 根节点指向自己for (int i = 0; i < len; i++) {parent[i] = i;}}public int find(int x) {while (x != parent[x]) {x = parent[x];}return x;}public void union(int x, int y) {int rootX = find(x);int rootY = find(y);// 如果两个元素的根节点一致,不需要合并if (rootX == rootY) {return;}// 如果根节点 rootX 的深度 > rootY。if (rank[rootX] > rank[rootY]) {// 那么将以rootY作为根节点的集合加入到rootX对应的集合当中rank[rootX] += rank[rootY];// 同时改变rootY的根节点,指向rootX。parent[rootY] = rootX;} else {// 反之rank[rootY] += rank[rootX];parent[rootX] = rootY;}// 合并成功,那么总集合数量要减1sum--;}
}

不过本题目当中,对于rank这个属性没有什么作用,最终看的是sum属性。因此大家可以把这个属性相关的给去除。

最后来看代码部分:

public int findCircleNum(int[][] isConnected) {// 初始化构造UnionFind unionFind = new UnionFind(isConnected);int len1 = isConnected.length;int len2 = isConnected[0].length;for (int i = 0; i < len1; i++) {for (int j = 0; j < len2; j++) {// 如果是相连的,那么将城市 i 和 j 合并if (isConnected[i][j] == 1) {unionFind.union(i, j);}}}// 最后返回集合个数(即省份的个数)return unionFind.sum;
}

最终代码如下:

public class Test547 {public int findCircleNum(int[][] isConnected) {UnionFind unionFind = new UnionFind(isConnected);int len1 = isConnected.length;int len2 = isConnected[0].length;for (int i = 0; i < len1; i++) {for (int j = 0; j < len2; j++) {// 如果是相连的,那么将城市 i 和 j 合并if (isConnected[i][j] == 1) {unionFind.union(i, j);}}}return unionFind.sum;}class UnionFind {private int[] rank;// 每个省份具有的城市数量private int[] parent;// 每个城市对应的根节点(省份)private int sum;// 省份的数量public UnionFind(int[][] isConnected) {int len = isConnected.length;// 初始化,省份数量和提供的城市数量一致sum = len;// 每个集合具有的城市数量为1rank = new int[len];parent = new int[len];Arrays.fill(rank, 1);// 根节点指向自己for (int i = 0; i < len; i++) {parent[i] = i;}}public int find(int x) {while (x != parent[x]) {x = parent[x];}return x;}public void union(int x, int y) {int rootX = find(x);int rootY = find(y);// 如果两个元素的根节点一致,不需要合并if (rootX == rootY) {return;}// 如果根节点 rootX 的深度 > rootY。if (rank[rootX] > rank[rootY]) {// 那么将以rootY作为根节点的集合加入到rootX对应的集合当中rank[rootX] += rank[rootY];// 同时改变rootY的根节点,指向rootX。parent[rootY] = rootX;} else {// 反之rank[rootY] += rank[rootX];parent[rootX] = rootY;}sum--;}}
}
http://www.lryc.cn/news/182566.html

相关文章:

  • 解决内网拉取企微会话存档代理问题的一种办法
  • 二十二,加上各种贴图
  • 新版校园跑腿独立版小程序源码 多校版本,多模块,适合跑腿,外卖,表白,二手,快递等校园服务
  • SpringBoot banner 样式 自动生成
  • 回收站里面删除的照片如何恢复?
  • Qt model/view 理解 2
  • 【LeetCode热题100】--114.二叉树展开为链表
  • Java | Maven(知识点查询)
  • Vmware 静态网络配置
  • 【数据结构--八大排序】之希尔排序
  • Linux中生成so库的文件引用另一个so库问题的解决
  • EDI是连接原始电子商务和现代电子商务的纽带
  • 星宿UI2.4资源付费变现小程序源码 支持流量主
  • 代码随想录训练营二刷第四十六天 | 完全背包 518. 零钱兑换 II 377. 组合总和 Ⅳ
  • python安装第三方模块方法
  • 广西小贷公司设立及小贷牌照申请政策要求
  • PyTorch应用实战二:实现卷积神经网络进行图像分类
  • 面试系列 - Java常见算法(二)
  • Cortex-A9 架构
  • 【C语言】循环结构程序设计(第二部分 -- 习题讲解)
  • UGUI交互组件Toggle
  • 亲,您的假期余额已经严重不足了......
  • 【软件测试】自动化测试selenium(一)
  • Nginx实现动静分离
  • 【算法题】309. 买卖股票的最佳时机含冷冻期
  • 1951-2011年长序列高时空分辨率月尺度温度和降水数据集
  • 十天学完基础数据结构-第六天(树(Tree))
  • RobotFramework流程控制(最新版本)
  • win11 好用的 快捷方式 --chatGPT
  • 在大数据相关技术中,HBase是个分布的、面向列的开源数据库,是一个适合于非结构化数据存储的数据库。